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Preface

The name “SPIN” refers both to a workshop on model checking and to a famous
model checking tool. The SPIN workshop is an annual forum for practitioners
and researchers interested in state space-based techniques for the validation and
analysis of software and hardware systems, including communication protocols.
It focuses on techniques based on explicit representations of state spaces, as
implemented in the SPIN model checker or other tools, and techniques based
on a combination of explicit representations with other representations. The
SPIN model checker has proven to be particularly suited for the analysis of
concurrent asynchronous systems. The workshop aims to encourage interaction
and exchange of ideas with all related areas in software engineering. To promote
interaction even further, many SPIN workshops have been held in conjunction
with other meetings.

The 13th International SPIN Workshop on Model Checking of Software was
held in Vienna, Austria, co-located with the European Joint Conferences on
Theory and Practice of Software (ETAPS) 2006. The earlier SPIN workshops
were held in Montreal, Canada (1995); Rutgers University, USA (1996); Twente
University, The Netherlands (1997); ENST, Paris, France (1998); Trento, Italy
(1999); Toulouse, France (1999); Stanford University, USA (2000); Toronto,
Canada (2001); Grenoble, France (2002); Portland, Oregon, USA (2003);
Barcelona, Spain (2004); and San Francisco, USA (2005). The proceedings of the
Trento and Toulouse workshops were published together in Springer’s Lecture
Notes in Computer Science volume 1680. From then on, each SPIN proceedings
has been published as an individual LNCS volume.

SPIN 2006 attracted 44 submissions, of which 5 were short tool presenta-
tions and 7 were co-authored by a member of the Program Committee. The
submissions were distributed to Program Committee members for reviewing.
They reviewed the papers either personally or delegated them to sub-reviewers.
The sub-reviewers are listed on page VIII. Each paper received three reviews,
and in one case an additional fourth review was obtained.

Submissions whose reviews were neither overwhelmingly positive nor over-
whelmingly negative were discussed by the Program Committee members. Most
discussions led to a consensus on the fate of the paper. In the few cases where a
disagreement remained to the end, the decision followed the opinion of the major-
ity of the Program Committee members who had participated in the processing
of that submission. All accepted papers had in the end more support (scores
4 and 5) than objection (scores 2, 1 and 0), and no rejected paper had more
support than objection. Program committee members who had co-authored a
submission, or for some other reason declared a conflict with it, were excluded
from all information regarding its processing.
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The Program Committee chose 19 submissions to be presented in the work-
shop and included in the proceedings. Of these, three were short tool presenta-
tions and four were co-authored by a member of the PC.

After processing the submitted papers, the Program Committee invited
Roope Kaivola (Intel Corporation, USA) to give a keynote talk on the verifica-
tion of microprocessors at Intel, and Stefan Edelkamp (Universität Dortmund,
Germany) to give a tutorial on directed model checking.

The submission deadline of SPIN 2006 was set quite late, to position it rea-
sonably relative to the submission deadlines of other conferences in the field.
As a consequence, the Program Committee had to work in an unusually short
period of time, perhaps the shortest in the recent history of SPIN. That the
full number of reviews was obtained for each submission is a small miracle. I
am grateful to every member of the Program Committee for their efficient and
excellent work!

In addition to the Program Committee, the help of the SPIN Steering Com-
mittee, and in particular its chair, Pierre Wolper (Université de Liège, Belgium),
was extremely important for the success of the paper selection process. On
the practical side, the OCS Online Conference Service (originally developed by
MetaFrame) maintained by Martin Karusseit and Markus Bajohr at the Uni-
versity of Dortmund proved once again very helpful in various stages of the paper
selection procedure. And, of course, without the hard work of local organizers
there would not have been any workshop — our thanks to Jens Knoop, Andreas
Krall, and their team.

January 2006 Antti Valmari
Program Chair

SPIN 2006
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Ştefănescu, Alin
Stegantova, Evghenia
Szreter, Maciej
Wei, Wei
Westergaard, Michael
Wozna, Bozena
Yang, Ping
Zhang, Dezhuang



Table of Contents

Directed Model Checking

Large-Scale Directed Model Checking LTL
Stefan Edelkamp, Shahid Jabbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Directed Model Checking with Distance-Preserving Abstractions
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Dragan Bošnački, Stefan Leue, Alberto Lluch Lafuente . . . . . . . . . . . . . . 271

Tool Demonstrations

A Counterexample-Guided Refinement Tool for Open Procedural
Programs

Aleksandar Dimovski, Dan R. Ghica, Ranko Lazić . . . . . . . . . . . . . . . . . 288
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Large-Scale Directed Model Checking LTL

Stefan Edelkamp and Shahid Jabbar

University of Dortmund,
Otto-Hahn Straße 14

{stefan.edelkamp, shahid.jabbar}@cs.uni-dortmund.de

Abstract. To analyze larger models for explicit-state model checking,
directed model checking applies error-guided search, external model check-
ing uses secondary storage media, and distributed model checking exploits
parallel exploration on multiple processors.

In this paper we propose an external, distributed and directed on-
the-fly model checking algorithm to check general LTL properties in
the model checker SPIN. Previous attempts are restricted to check-
ing safety properties. The worst-case I/O complexity is bounded by
O(sort(|F||R|)/p+ l ·scan(|F||S|)), where S and R are the sets of visited
states and transitions in the synchronized product of the Büchi automata
for the model and the property specification, F is the number of accept-
ing states, l is the length of the shortest counterexample, and p is the
number of processors. The algorithm we propose returns minimal lasso-
shaped counterexamples and includes refinements for property-driven
exploration.

1 Introduction

The core limitation to the exploration of systems are bounded main memory
resources. Relying on virtual memory slows down the exploration due to excessive
page faults. External algorithms [31] exploit hard disk space and organize the
access to secondary memory. Originally designed for explicit graphs, external
search algorithms have shown considerably good performances in the large-scale
breadth-first and guided exploration of games [22, 12] and in the analysis of
model checking problems [24]1.

the idea of external model checking was introduced in A Directed explicit-
state model checking [13] enhances the error-reporting capabilities of model
checkers. The application of guided search for checking liveness properties is
restricted to the reduction of trails [14].

Distributed explicit state model checking [9, 25] uses several processors work-
ing in parallel to enhance the exploration of larger models.

1 An anonymous referee has pointed us to the work of Roscoe: Model Checking CSP in
A Classical Mind, Essays in Honour of C.A.R. Hoare, Prentice-Hall 1994, which also
introduces to the idea of external model checking for the FDR system. Unfortunately,
we haven’t been able to access the reference.

A. Valmari (Ed.): SPIN 2006, LNCS 3925, pp. 1–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 S. Edelkamp and S. Jabbar

In [18] we have given a first report on combining directed, parallel and ex-
ternal explicit-state model checking to enhance the search for minimal coun-
terexamples for safety errors. Under certain assumptions on the distribution of
the applied hash function and the number of file pointers we showed that the
approach uses linear, i.e., O(scan(|S| + |R|)) I/Os. In a sequential setting, for
safety explicit-state model checking state-space graphs with bounded locality we
arrive at O(sort(|R|) + scan(|S|)) I/Os, which is optimal [12].

The goal of this work is to extend this work to the exploration for check-
ing liveness properties. The main challenge for distributed and external on-the-
fly model checking is that the depth-first traversal of the global state space
graph as used in Nested-DFS (an on-the-fly variant of Tarjan’s algorithm [35])
is not efficient. All attempts to solve this problem via variants of breadth-first
search [7, 4, 9] arrive at a time complexity that is non-linear in the size of the
model. The approach we propose in this paper is based on a translation proce-
dure of liveness problems into safety problems [32]. The translation approach has
the advantage that the underlying algorithm design to detect safety errors has
not to be changed. More crucially, the approach includes a rich state description
which allows to express lower bounds for cost-optimal guided search. To enhance
the exploration, we additionally exploit the never-claim automaton structure of
the temporal property to be satisfied.

The paper is structured as follows. First we briefly review explicit-state LTL
model checking using Büchi automata. Then we consider distributed model
checking together with its limits and possibilities. Afterwards we introduce to
external model checking safety properties and delayed duplication detection. We
first consider breadth-first implicit graph search. Next we turn to the guided
search, recalling the algorithm External A*. The upcoming section points out
the problems in externalizing standard DFS model checking algorithms. This
leads to the proposed approach for I/O efficient parallel external model check-
ing. We provide monotone heuristics for optimal counterexample search and give
empirical data for checking LTL formulae in an external and parallel variant of
the SPIN model checker. Finally, we draw conclusions and indicate further re-
search avenues.

2 Explicit-State Model Checking

In automata-based model checking, both the model to be analyzed and the spec-
ification to be checked are modeled as non-deterministic Büchi automata. Syn-
tactically, Büchi automata are ordinary automata. For accepting infinite words,
or runs, a different acceptance condition is applied. Let ρ be a run and inf(ρ) be
the set of states reached infinitely often in ρ, then a Büchi automaton accepts,
if the intersection between inf(ρ) and the set of final states F is not empty.

2.1 Automata-Based LTL Model Checking

The desired property of the system is specified in some form of temporal logic. We
briefly introduce linear temporal logic (LTL). A path in model M is a sequence
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of states π = S0, S1, . . . and πi denotes the suffix of π starting at Si. LTL
formulae have the form “Always f”, where f is a path formula. If p is an atomic
proposition then p is a path formula. If f and g are path formulae so are ¬f, f ∨
g, f ∧ g,X f,F f,G f , and f U g.

Transforming the model and the specification into Büchi automata assumes
that systems can be modeled by automata, and that the LTL formula can be
transformed into an equivalent Büchi automaton. The converse is not always
possible, since Büchi automata are clearly more expressive than LTL expres-
sions [36]. Checking correctness is reduced to checking language emptiness. More
formally, the model checking procedure validates that a model represented by
an automaton M satisfies its specification represented by an automaton S. The
task is to verify if L(M) ⊆ L(S). In words: the language accepted by the model
is included in that of the specification. We have L(M) ⊆ L(S) if and only if
L(M) ∩ L(S) = ∅. In practice, checking language emptiness is more efficient
than checking language inclusion. Büchi automata are closed under intersection
and complementation [8], so that there exists an automaton that accepts L(S)
and an automata that accepts L(M)∩L(S). It is possible to complement Büchi
automaton equivalent to an LTL formula, but the worst-case running time of
such a construction is double-exponential in the size of the formula. Therefore,
in practice one constructs the never-claim automaton for negation of the LTL
formula, avoiding complementation.

The product is synchronous, that is each transition in one automaton implies
one in the other. The property automaton is non-deterministic, such that both
the successor generation and the temporal formula representation may introduce
branching to the overall exploration. The construction assumes that all states in
the model are accepting. If arbitrary Büchi automata are intersected, extended
acceptance conditions are required [11].

For checking emptiness we have to check that the automaton accepts no
word. Accepting runs are present in the automaton if the strongly connected
components (SCCs) reachable from the initial state contain at least one accept-
ing state. In this case, a reachable cycle contains at least one accepting state.
Checking language emptiness corresponds to the validation that no such cycle
exists.

2.2 Tarjan’s Algorithm

For finding accepting cycles, we analyze the state space graph structure; more
precisely, the strongly connected components, SCCs for short. An algorithm to
compute all such components of a graph in linear time is Tarjan’s algorithm [35].
The algorithm is divided into four stages. In the first stage, a DFS starting at
the initial state computes the discovery and finishing times td(u) and tf (u) for
each visited state u, which corresponds to the time, when node u is entered and
left. The second stage computes the inverse of the graph. In the third stage, a
series of DFSs considers the nodes in order of decreasing tf -value. The fourth
and last stage outputs the nodes of each tree in the DFS forest of the third stage
as a strongly connected component.
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2.3 Nested DFS

On-the-fly model checking is an efficient way to perform model checking. It com-
putes the global state transition graph during the construction of the intersec-
tion. The advantage is that only a part of the state space is constructed, which
is needed in order to check the desired property.

For checking the synchronous product graph of the model and the speci-
fication for accepting cycles on-the-fly, nested-depth-first search has been pro-
posed [17]. It explores the state space in a depth-first manner, stores visited
states in a visited list, marks states which are on the current search stack, and
invokes a secondary DFS starting at accepting states after they have been fully
explored in the primary DFS. The secondary DFS explores states already visited
by the primary search but not by any secondary search; states visited by the
second search are flagged and if a state is found on the stack of first search, an
accepting cycle is found. Typical implementations use 2 bits per state, one for
marking, one for flagging. As with Tarjan’s algorithm its worst-case is linear in
the size of the intersected state transition graph, but it is capable of reporting
counter-examples before the entire state space has been seen.

Property-driven or improved nested-depth-first search [3, 25] partitions the
never-claim into SCCs. The main observation is that cycles in the state transi-
tion graph of the intersection of the system M and the never-claim automaton
N is accepting only if the corresponding cycle in N is accepting. Therefore,
these approaches use Tarjan’s algorithm to analyze never-claim. An SCC in N
is called non-accepting if none of its states is accepting; fully-accepting, if each
cycle formed by states of the SCC is accepting, and partially-accepting, other-
wise. Improved nested DFS partitions the never-claim into SCCs and applies
secondary search only in case of partially accepting cycles.

3 Distributed Model Checking LTL

Liveness property validation based on DFS appears to be an inappropriate choice
for distributed model checking. For distributed model checking the core reason
is that in contrast to BFS, DFS appears to be inherently sequential [29]. Differ-
ent attempts have been suggested to allow an efficient parallelization for model
checking liveness. Unfortunately, none of the approaches guarantee a linear time
complexity.

3.1 Breadth-First LTL Model Checking

A line of research tries to avoid nested depth-first search by studying variants of
breadth-first search [5, 4, 7]. The approach presented in [5, 4] invokes a secondary
search for detecting cycles from BFS backward edges, i.e., transitions encountered
in the overall state space that link states in larger, together with (already ex-
plored) states in smaller depth. Those backward edges may potentially spawn
cycles and are searched individually. If no accepting cycle is found the depth



Large-Scale Directed Model Checking LTL 5

bound is increased. The number of backward edges is reduced by similar obser-
vations as in improved nested depth-first search. The worst case time complexity
is O(|R|·(|S|+ |R|)). The approach allows on-the-fly model checking and is com-
patible with a limited form of partial order reduction. In [7], instead of backward
edges, predecessor acceptance is chosen for an O(|R|2 + |S|) algorithm.

3.2 Explicit Fair Cycle Detection

In [9], the symbolic OWCTY2 algorithm [15] is converted into an explicit one.
Similar to Tarjan’s algorithm, the approach computes the entire reachability
set before extracting the cycle. Unlike Tarjan’s algorithm, the order of the ex-
ploration does not matter. Next, a loop alternates between a reachability and
elimination phase unless a fixpoint is reached. In the first phase, fair states are
checked if they can be reached again. In the second phase, states with a de-
termined fair status are eliminated from the search. The worst case number of
iterations is bounded by the diameter d of the search space. The explicit state
conversion of the approach runs in O(d · (|R|+ |S|)) time and has been exploited
to perform distributed model checking. Cycle extraction for counter-example
generation runs in linear time.

4 External Model Checking Safety

I/O-efficient model checking algorithms explicitly manage the memory hierar-
chy and can lead to substantial speedups compared to caching and pre-fetching
heuristics of the underlying operating system, since they are more informed to
predict and adjust future memory access.

The standard model for comparing the performance of external algorithms
consists of a single processor, a small internal memory that can hold up to M
data items, and an unlimited secondary memory. The size of the input problem
(in terms of the number of records) is abbreviated by N . Moreover, the block
size B governs the bandwidth of memory transfers. It is often convenient to refer
to these parameters in terms of blocks, so we define m = M/B and n = N/B.
It is usually assumed that at the beginning of the algorithm, the input data is
stored in contiguous blocks on external memory, and the same must hold for the
output. Only the number of block reads and writes are counted, computations
in internal memory do not incur any cost. The single disk model for external
algorithms has been invented by [2]. An extension of the model considers D disks
that can be accessed simultaneously. When using multiple disks in parallel, the
technique of disk striping can be employed to essentially increase the block size
by a factor of D. Successive blocks are distributed across different disks.

It is convenient to express the complexity of external-memory algorithms us-
ing a number of frequently occurring primitive operations. The simplest opera-
tion is scanning, which means reading a stream of records stored consecutively on

2 Acronym for One Way to Catch them Young.



6 S. Edelkamp and S. Jabbar

secondary memory. In this case, it is trivial to exploit disk- and block-parallelism.
The number of I/Os is scan(N) = Θ( N

DB ) = Θ( n
D ). Another important operation

is external sorting. The proposed algorithms fall into two categories: those based
on the merging paradigm, and those based on the distribution paradigm. The
algorithms’ complexity is sort(N) = Θ( N

DB logM/B
N
B ) = Θ( n

D logm n).

4.1 External BFS

Recall the standard internal-memory BFS algorithm: it visits each node v ∈ V of
the input problem graph G in a one-by-one fashion, as stored in a FIFO queue.
After a node v is extracted, its adjacency list (the sets of neighbors in G) is
examined, and those of them that haven’t been visited so far are inserted into
the queue in turn. In external search the internal queue is substituted with a file.
Naively running the standard internal-BFS algorithm in the same way in external
memory will result in Θ(|S|) I/Os for unstructured accesses to the adjacency
lists, and Θ(|R|) I/Os for finding out whether neighboring nodes have already
been visited. The explicit external graph algorithm of [27] improves on the latter
complexity for the case of undirected graphs, in which duplicates are constrained
to be located in adjacent levels. After the preprocessing step the graph is stored
in adjacency-list representation, it generating the multi-set of neighbors for each
BFS-level followed by a duplicate elimination phase. Duplicate elimination is
realized via external sorting followed by an external scan. External BFS requires
O(|S|+sort(|R|)) time, where O(|S|) is due to the external representation of the
graph and the initial reconfiguration time to enable efficient successor generation.

An implicit variant of the above algorithm algorithm [27] for explicit BFS-
search in implicit graphs has been coined to the term delayed duplicate detection
for frontier search [21]. It assumes an undirected search graph. The algorithm
maintains BFS layers on disk. Layer L(i−1) is scanned and the set of successors
are put into a buffer of size close to the main memory capacity. If the buffer
becomes full, internal sorting followed by a duplicate elimination scanning phase
generates a sorted duplicate-free state sequence in the buffer that is flushed to
disk. The outcome of this phase are k sorted files. In the next step, external
merging is applied to unify the files into L(i) by a simultaneous scan. The size
of the output files is chosen such that a single pass suffices. Duplicates are elim-
inated. Since the files were sorted, the complexity is given by the scanning time
of all files. One also has to eliminate L(i − 1) and L(i − 2) from L(i) to avoid
re-computations; that is, nodes extracted from the external queue are not imme-
diately deleted, but kept until after the layer has been completely generated and
sorted, at which point duplicates can be eliminated using a parallel scan. The
process is repeated until L(i − 1) becomes empty, or the goal has been found.
The total execution time is O(sort(|R|) + scan(|S|)) I/Os. The I/O optimality
of External BFS is based on the work of [1], who gave a matching lower bound
for external sorting.

External BFS has been successfully applied to fully explore the 15-Puzzle
using 1.4 terabytes of hard disk in about three weeks [22]. The algorithm shares
similarities with the internal frontier search algorithms [23] that were used
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for solving multiple sequence alignment problem, an idea that goes back to
Hirschberg [16].

4.2 External A*

External A* [12] maintains the search space on disk. The priority queue data
structure is represented as a list of buckets. In the course of the algorithm, each
bucket L(i, j) will contain all states u with path length g(u) = i and heuristic
estimate h(u) = j. We will later discuss how such estimates can be derived in
real-time minimum-cost reachability analysis. As same states have same heuristic
estimates, it is easy to restrict duplicate detection to buckets of the same h-value.
By an assumed undirected, unweighted state space problem graph structure, we
can restrict aspirants for duplicate detection further. If all duplicates of a state
with g-value i are removed with respect to the levels i, i − 1 and i − 2, then no
duplicate state will remain for the entire search process. For breadth-first-search
in explicit graphs, this is in fact the algorithm of [27]. We consider each bucket
as a different file that has an individual internal buffer. A bucket is active if
some of its states are currently expanded or generated. If a buffer becomes full,
then it is flushed to disk.

Since External A* simulates A* and changes only the order of elements to
be expanded that have the same f -value, completeness and optimality are in-
herited from the properties of A*. The I/O complexity for External A* in an
implicit unweighted and undirected graph with monotone estimates is bounded
by O(sort(|R|)+scan(|S|)), where |S| and |R| are the number of nodes and edges
in the explored subgraph of the state space problem graph. It has been shown [12]
that the lower bound for the delayed duplicate detection is Ω(sort(|S|)) I/Os.

Parallel External A* [18] is a parallel variant of External A* based on queues
of working requests. In the exploration stage, each processor flushes the succes-
sors with a particular g and h value to an individual file. It has its own hash
table and eliminates some duplicates already in main memory. If the output
buffer exceeds memory capacity the processor writes the hash table to disk. In
a first sorting stage, it sorts its own files. The number of file pointers needed is
restricted by the number of flushed buffers. In the distribution stage, a single
processor distributes all states in the pre-sorted files into different files accord-
ing to the hash value’s range. As all input files are sorted this is a mere scan.
In the second sorting stage, processors externally sort the partially sorted files
to find further duplicates. The output of this phase are sorted and partitioned
buffers. Using the hash index as the sorting key the concatenation of files is
totally sorted.

5 Problems with Externalizing DFS

External depth-first search relies on an external stack data structure. The search
stack is small compared to the overall search but in the worst-case it can become
large. For an external stack, the buffer is just an internal memory array of 2B
elements that at any time contains the k < 2B elements most recently inserted.
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We assume that the stack content is bounded by at most N elements. A pop
operation incurs no I/O, except for the case where the buffer has run empty,
where O(1) I/O to retrieve a block of B elements is sufficient. A push operation
incurs no I/O, except for the case where the buffer has run full, where O(1) I/O
is to retrieve a block of B elements is needed. Insertion and deletion take 1/B
I/Os in the amortized sense.

The I/O complexity for external DFS for explicit (possible directed) graphs
has been shown to be O(|S| + |S|/M · scan(|R|)) [10]. There are |S|/M stages
where the internal buffer for the visited state set becomes full, in which case
it is flushed and duplicates are eliminated from the external adjacency list rep-
resentation by a file scan. Visited successors in the unexplored adjacency lists
are marked not to be generated again, such that all states in the internal vis-
ited list can be eliminated for good. As with External BFS in explicit graphs,
value O(|S|) I/Os is due to the unstructured access to the external adjacency
list. Computing SCCs in explicit graphs has the same I/O complexity as DFS,
i.e. O(|S| + |S|/M · scan(|R|)) I/Os. For implicit graphs as generated for model
checking liveness, no access to an external adjacency list is needed, so that the
world should look better. Dropping the term of O(|S|) I/O as with External
BFS, however, is a challenge. The major problem for external DFS exploration
in implicit graphs is that unseen adjacencies cannot been modeled and there is
no time for performing delayed duplicate detection. For implicit graphs this is
not available, as we cannot access the search graph that we have not seen so far.

6 Large-Scale Model Checking Liveness

We decided to build our external model checker on top of the liveness as safety
model checking approach [32]. It proposes to convert a liveness model checking
problem into a safety model checking problem by roughly doubling the state vec-
tor size and guessing the seed of a fairness cycle. More precisely, the proposed
extension stores with the current state s a previously seen state s′ together with
two flags start-cycle and closed-cycle. The first flag is set to prevent future over-
writing of the stored state. The second flag indicates that a second occurrence
of s′ has been found. Unless the seed of the cycle has not been guessed s equals
s′. The initial state is spawned to two states, one attached to (false,false) and
the other attached to true,false). If S and R are the set of states and the set
of transitions of the synchronous product of the model and the (never-claim)
specification, then S is searched at most |S| times, yielding a time complexity
of O(|S| · (|S| + |R|)).

The most important observation is that based on this extension the explo-
ration algorithms themselves have not (or only in a minor way) to be changed.
For example, in [32] the authors show how to extend models using so-called ob-
servers and applying the same model checker. In [33] the authors showed that
for fairness constraints of the form Fp we have that

ρ = (S1 . . . Sl−1)(Sl . . . Sk−1)ω
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is a run in the state space S if and only if

ρ′=(S0, S0, 0, 0) . . . (Sl−1, Sl−1, 0, 0)((Sl, Sl, 1, 0) . . . (Sk−1, Sl, 1, 0))ω(Sl, Sl, 1, 1)

is a run in the extended state space S′.
As this construction does not yet record Büchi automaton acceptance con-

ditions for explicit-state model checking, as suggested by [32], we work with a
slightly different state description. State pairs in the first phase are called pri-
mary states, states pairs in the secondary phase are called sencondary states.
We drop Boolean variables completely as we distinguish primary from secondary
states by comparing the state vectors of the state pair. Moreover, we spawn sec-
ondary children only at accepting primary states.

Without any heuristic the algorithm executes external breadth-first search,
where each iteration can actually be seen as a snapshot in bounded automata-
based model checking. Bounded model checking [6] uses a propositional SAT
solver for the symbolic exploration of model checking problems. It exploits the
SATPLAN exploration idea of [20] using a rising search horizon k to generate
Boolean formulae encoding the overall exploration problem up the BFS-level
k. In bounded automata-based model checking we use a similar approach, but
without using BDDs nor SAT-formulae. To avoid traversing the full state space
in Tarjan’s algorithm, we analyze the cross product graph up to some threshold
depth value k. If we find a counter-example already in depth k we terminate,
otherwise we increase k. The bounded semantics for this strategy are the same
as in BMC [6]: π |=i

k p if and only if p ∈ L(p(i)), π |=i
k ¬p if and only if

p /∈ L(p(i)), π |=i
k f ∧ g if and only if π |=i

k f and π |=i
k g, π |=i

k f ∨ g if
and only if π |=i

k f or π |=i
k g, π |=i

k Gf is always false, π |=i
k Ff if and only

if ∃j, i ≤ j ≤ k : π |=j
k f , π |=i

k Xf if and only if i < k and π |=i+1
k f , and

π |=i
k fUg if and only if ∃j, i ≤ j ≤ k : π |=j

k g and ∀n, i ≤ n < j : π |=n
k f .

Theorem 1. For problem graphs the external BFS LTL model checking algo-
rithm finds the shortest counterexample with an accepting seed state. Its I/O
complexity is O(sort(|F||R|)+ l · scan(|F||S|)), where l is the length of the short-
est counterexample.

Proof. Since each state is expanded at most once, all sortings can be done in
time O(sort(|F||R|)) I/Os. Filtering, evaluating, and merging are all available
in scanning time of the buckets in consideration. The I/O complexity for pre-
decessor elimination depends on the number of buckets that are referred to
during file subtraction/reduction. The number of buckets is bounded by the
number of layers and thus the length of the shortest counterexample. Conse-
quently, the I/O complexity for large-scale LTL model checking is bounded by
O(sort(|F||R|) + l · scan(|F||S|)) I/Os.

6.1 Heuristics for Safety Model Checking

For defining heuristics for safety model checking, we assume that the global state
space is generated based on the asynchronous compositions of local state spaces
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Pi, i ∈ {1, . . . , n}, called processes. In other words, each global system state
is partitioned into n local states. The state of a local process Pi is called its
program counter, i ∈ {1, . . . , n}, pci for short.

The FSM distance heuristic is defined as the sum for each Pi of the distance
between the local state of Pi in s and the local state of Pi in s′, i.e.,

Hm(s, s′) =
n∑

i=1

Di(pci(s), pci(s
′)),

where Di(pci(s), pci(s′)) denotes the shortest path from pci(s) to pci(s′) in the
automaton representation of Pi. The values for Di are computed prior to the
search.

6.2 Trail-Directed Heuristics

The FSM distance heuristic assumes that both states s and s′ are known to the
exploration module. It has mainly been used in trail-directed search, where a
counter-example to an existing error state is to be shortened. It has also been
applied to the verification of liveness properties where the prefix path to the
start of the cycle and the accepting cycle itself are shortened in sequence. For
this case the distance in the never-claim automaton N is included as follows

H ′
m(s, s′) = max {HM (s, s′), DN (pcN (s), pcN (s′))} .

As the product of different processes is asynchronous, it is not difficult to see [26]
that the FSM distance is monotone, i.e., Hm(s)−Hm(s′) ≤ 1 for each pair (s, s′)
with s′ being the direct successor of s. Monotone heuristics guarantee the op-
timality of counterexample paths in heuristic search exploration algorithms like
A* [28]. It is also not difficult to see that the maximum of two monotone heuris-
tics is monotone. Hence, H ′

m(s, s′) is also a monotone heuristic for shortening
liveness trails.

6.3 Heuristic for LTL Properties

In the extended search space S′ we search for shortest lasso-shaped counterexam-
ples, without knowing the start of the cycle beforehand. We used the monotone
heuristic

Ha(s) = min
s′∈FN

{DN (pcN (s), pcN (s′))}

for finding accepting states in the original search space.
States in the extended search are abbreviated by tuples (s, s′), with s record-

ing the start state of the cycle s′ being the current search state. If we reach
an accepting state, we immediately switch to secondary search. Therefore, we
observe two distinct cases: primary search, accepting state not yet reached, sec-
ondary search, accepting state once found. The state s = s′ reached in secondary
search is the goal. As it is a successor of a secondary state, we can distinguish
the situation from reaching such a state for the first time.
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For all e = (s, s′) in the extended search space S′, let Ha(e) = Ha(s) and
HM (e) = HM (s, s′). Now we are ready to define a heuristic for liveness

H(e) =
{

Ha(s) if s = s′

H ′
M (s, s′) if s �= s′

(1)

Lemma 1. Let h∗(e) be the shortest lasso-shaped counterexample with an ac-
cepting seed state starting at e. Then H(e) is a lower bound on h∗(e).

Proof. As each counterexample has to contain at least one accepting state in the
never-claim, for primary states e we have that H = Ha(e) is a lower bound. For
secondary states e = (s, s′), we have

H(e) = H ′
M (s, s′) = max{HM (s, s′), DN (pcN (s), pcN (s′))},

a lower bound to close the cycle and the lasso in total.

Lemma 2. The estimator H is monotone, i.e., H(e) − H(e′) ≤ 1 for all suc-
cessor states e′ of e.

Proof. Consistency is a local property. As both Ha and H ′
M are monotone [26]

and only one of them is true at a time, the only thing we have to show that H is
monotone are the transitions between the different cases. The only problematic
situation is the transition in case of reaching an accepting state. Here we have
that a predecessor e with an evaluation of H(e) = Ha(e) = 0 spawns successors
e′ with evaluation values of HM (e′) > 0. However, this incurs no problem as
H(e) − H(e′) ≤ 1 still preserves monotonicity.

The gap between HM and Ha at accepting states may indicate that there is
some option for applying an improved search estimate.

The next result shows that, given a monotone heuristic estimate, our ap-
proach terminates with an minimal-length counterexample where the lasso seed
is accepting. If one allows seed states also to be non-accepting, there are poten-
tially shorter counterexamples. This is possible if the accepting state is reachable
only via a non-accepting seed. In this case the path from the seed to the accept-
ing state would appear twice in the corresponding counterexample found in our
algorithm starting the secondary search from an accepting seed state. Note that
this subtlety does not effect completeness, a lasso with accepting seed exists if
and only if an lasso with an accepting cycle exists.

7 External Guided Exploration

The model checking algorithm for directed external LTL search is an extension
External A* and traverse the bucket file list along growing f = g + h diagonals.
In each external state we store (packed) original state vector pairs (s, s′) with
s = s′.

Figure 1 (left) depicts a prototypical execution of the guided exploration. For
primary nodes (illustrated using two white half circles), we apply the heuristic
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h−value

g−value

h−value

g−value

Fig. 1. Directed model checking LTL (left), distribution among several processors
(right)

Ha, while for secondary nodes (illustrated using cycles half white/half black) we
apply the estimate Hm. Once a terminal state with s = s′ (illustrated using two
black half circles) is reached we have found an accepting cycle.

Figure 1 (right) illustrates how to perform parallel exploration3. The internal
work for exploration a bucket is uniformly distributed among the set of available
processors, that individually expand and sort individual files as described above.

Theorem 2. For problem graphs the external, parallel and guided LTL model
checking algorithm finds the shortest counterexample with an accepting seed state.
Its I/O complexity is O(sort(|F||R|)/p + l · scan(|F||S|)), where l is the length
of the shortest counterexample.

Proof. The proof is analogous to Theorem 1. Additionally, the parallelism divides
the sorting efforts.

The main advantage of directed search is that the set of expanded states S (and
subsequently R) is smaller than with blind search.

The solution path is reconstructed by backward chaining starting with the
final state. There are two main options. Either for a state in depth g we intersect
the set of possible predecessors with the buckets of depth g − 1. Any state that
is in the intersection is reachable on an optimal solution path, so that we can
recur. As generating the predecessor state can be problematic in software model

3 For a full treatment of the parallel execution of External A* we refer the reader
to [19]. As the paper is not printed yet, the reviewers can obtain a copy of the work
at http://ls5-www.cs.uni-dortmund.de/∼jabbar/vmcai06.pdf
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checking domains, we may store with each state its predecessor on a shortest
path, doubling the required disk space. The time complexity is bounded by the
scanning time of at most l buckets in consideration and surely in O(scan(|F||S|)).

8 Experiments

We implemented external LTL property validation on top of our experimental
model checker IO-HSF-SPIN [18], the recent extension the directed model check-
ing SPIN-derivate HSF-SPIN. The inputs are Promela-files and the output is a
trail file in SPIN’s format. The Promela language scope of IO-HSF-SPIN is not
as large as in SPIN4 as it lacks some features like fully dynamic process creation
and embedded c-code, but sufficiently strong even for larger models that we have
in our benchmark set.

As with its ancestors, in IO-HSF-SPIN Promela models are compiled into
self-contained model checking units. The experiments for single-processor were
conducted on a Pentium-4 PC, 3 GHz with 2 gigabytes of main memory and 180
gigabytes of hard disk. We exploit disk parallelism by RAID 0 using two hard
disk. For multi-processor experiments we chose a Sun Enterprise System with
four 750 MHz processors working with 8 gigabyte RAM and 30 gigabyte shared
hard disk space. In this case, we worked with a single hard disk, so that no form
of disk parallelism was exploited.

We choose a small internal buffer size for buffered reading and writing con-
sisting of only 1,997 states. We applied internal (hash table based) and external
(delayed) duplicate detection within the next bucket to expand. Duplicate elimi-
nation with respect to visited states in previous buckets is not done. This reduces
the number of scans to linear-time complexity by the cost of some redundant
states. The heuristic we applied takes a combination of Ha (for primary search)
and HM (for secondary search).

When comparing to SPIN it should be noted that this model checker was
invoked with partial order reduction. Actually, as indicated by [26], partial order
reduction preserves completeness but not optimality. It may lead to non-optimal
counterexamples.

In our first set of experiments we use an elevator simulation protocol5. Table 1
shows the exploration results. We denote the number of expanded states, the
number of states inserted to the hash table, the CPU time consumed and the
length of the counterexample obtained. The sizes of the counterexamples are
divided into the prefix and cycle length.

We compare the results of the exploration of External BFS and External
A* as implemented in IO-HSF-SPIN with Nested-DFS as implemented in SPIN,
Distribution 4.2. Due to the statistic information provided by SPIN instead of
the number of expanded and inserted states, we give the number of stored states
and explored transitions6. SPIN and IO-HSF-SPIN return counterexamples that
4 The SPIN code we started with was SPIN 3.4.
5 Derived from www.inf.ethz.ch/personal/biere/teaching/mctools/elsim.html
6 The counterexamples are produced with the options -t -p.
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Table 1. LTL Model Checking with External A*, External BFS and Internal Nested
DFS for 2-Elevator protocol

I/O-HSF-SPIN Expanded Inserted Time Length
External A* 2,090,933 2,275,778 1m18s 67 + 34
External BFS 2,642,575 2,827,073 2m3.96s 67 + 34

SPIN 4.2 Transition Stored Time Length
Nested DFS 33,900 11,149 0m0.064s 109 + 100

Table 2. LTL Model Checking with External A*, External BFS and Internal Nested
DFS for SGC protocol

I/O-HSF-SPIN Expanded Inserted Time Length
External A* 178 369 0m1.318s 15 + 5
External BFS 1,343 1,427 0m0.787s 15 + 5

SPIN 4.2 Transition Stored Time Length
Nested DFS 155,963 8,500 1m47s 18 + 5

start at accepting states7. We observe that SPIN’s counterexamples are in gen-
eral longer than the ones in IO-HSF-SPIN8.

From the results of our first experiments we do not see a large gain of External
A* compared to External BFS in the number of expanded and inserted states.
The established counterexample lengths match. In the time, however, we see that
External A* is considerably faster. There a different reason for the difference
in ratios for the number of expansions and CPU time. First, as there are less
buckets in External BFS (one for every layer) compared to External A*, there
are more I/Os needed for external sorting. The other reason is that the number of
generated nodes that fall into the buckets that are not considered for expansion
(with counterexample length larger than the optimum) are larger for External
BFS.

SPIN’s exploration is remarkably good, as it requires only 6 milliseconds
for generating an optimized trail. The number of stored nodes for Nested-DFS
is much smaller as compared to blind BFS and A* LTL property search. The
established counterexample is longer.

In the second experiment we take a larger protocol, as used in [37], a Promela
model of a procedure with related processes. In Table 2 we see an opposite
behavior as compared to the previous experiment. External search performed
a much smaller number of expansions than internal iterated Nested DFS. The
7 Without the predefined bound on the search depth, SPIN tends to find very long

counterexamples, e.g. with 9998 steps. We therefore chose an iterative depth-first
search strategy -i for SPIN. As this option may be caught in a depth anomaly [26]
we also checked option -DREACH, which should return optimal traces. However, the
results we obtained with this setting were not better than with -i.

8 This is not neccessarily due to their non-optimality, but probably relying on a dif-
ferent measurement for steps, as SPIN is likely to put some additional increment on
synchronized never-claim transitions.
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reason is that iterative improvement strategy takes a long time to decrease the
counterexample length to a feasible low number. The behavior of External BFS
compared to External A* is also opposite to the above. Now the number of
expansion is smaller in External A* is much smaller due to its good guidance, but
External BFS CPU time is superior. The reason for this is that the distribution
of the heuristic estimate is fine-grained such that many internal buckets have to
be allocated but never used.

In the third set of experiments we choose the scalable Dining Philosophers
protocol with 64 philosophers. The LTL property we checked for was

[] (philosopher[1]@eat -> <> philosopher[2]@eat)

realizing the response property that always if the first philosopher eats, so does
the second. Table 3 shows our results. Coincidently, the number of expanded
nodes for guided and unguided external search match. The number of inserted
nodes is, however, smaller for External BFS. We explain this behavior by absence
of external duplicate removal for unexplored buckets. In agreement with this
argument, External BFS took more time to perform external delayed duplicate
detection. SPIN, unfortunately, ran out of memory. It found counterexample
in very large depth, but was unable to shorten the trail. Even provided with a
depth bound of 300 it was unable to terminate its iterated improvement strategy,
due to the limits of main memory, which in our case was 2 gigabytes. Manually
adapting the search depth to the optimum of 212 allowed SPIN to complete its
exploration finding a counterexample with a acceptance cycle seed at depth 207.

For distributed execution on the multi-processor machine we again choose
the Dining Philosopher example (see Table 4), now scaled to 128 philosophers.
First, we note that disk space consumption is considerably large. The single
processor version could not finish its exploration. One file for the set generated
states became larger than 2 gigabytes and was killed by the operating system.

Table 3. LTL Model Checking with External A*, External BFS and Internal Nested
DFS for 64-Dining Philosopher

I/O-HSF-SPIN Expanded Inserted Time Length
External A* 2,298 127,813 0m6.108s 196 + 2

External BFS 2,298 47,118 0m13.549s 196 + 2
SPIN 4.2 Transition Stored Time Length

Nested DFS -out-of-mem- -out-of-mem- – –

Table 4. LTL Model Checking with External A* for 128-Dining Philosopher

I/O-HSF-SPIN Time Secondary Memory Length
1 processor – – –
2 processors 5m53.96s 4.7 gigabytes 388 + 2
3 processors 4m7.13s 5.28 gigabytes 388 + 2
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The reason that the multi-processor versions could finalize their implementation,
is early duplicate detection in intermediate files. The length of the produced
counterexamples match and the observed speed-up is noticeable.

9 Conclusion

In this work we have combined directed, external and parallel approaches to
compute optimal counterexamples for LTL properties in explicit-state model
checking. The I/O complexity of O(sort(|F||R|)/p + l · scan(|F||S|)) is a dras-
tic improvement to simulating DFS as done for computing strongly connected
components in explicit graphs with Tarjan’s algorithm, as it avoids unstructured
access to the adjacency lists. Different to NestedDFS the approach provides an
optimality guarantee on the length of the counterexample.

The search space is generated using state pairs of active and cycle seed state,
which supports the design of monotone LTL heuristics for directed model check-
ing. Primary and secondary search states are examined together in one common
file. The underlying exploration algorithm extends External A* to allow accept-
ing cycles to be found. As with External A*, the approach can be effectively
be parallelized. Duplicate detection is delayed. Up to synchronization mecha-
nism for work distribution, no communication between the individual processes
is needed, which in large problems allows almost linear speed-ups in a distributed
environment.

With this research, we hope to have pushed the limits of practical model
checking where the internal memory does not limit the number of realistic mod-
els that can be verified. With our support of pause-and-resume the size of the
secondary storage can be resized without harming the correctness of the model
checking process. Combining this with our approach presented in [19] on parallel
external guided safety model checking, we now put our focus on larger industrial-
sized models, which means targeting towards state spaces requiring terrabytes
of storage.

A challenge for future research will be to reduce the (sequential) time com-
plexity to O(sort(|R|) + scan(|S|)) as for safety model checking.
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Abstract. In directed model checking, the traversal of the state space
is guided by an estimate of the distance from the current state to the
nearest error state. This paper presents a distance-preserving abstraction
for concurrent systems that allows one to compute an interesting estimate
of the error distance without hitting the state explosion problem. Our
experiments show a dramatic reduction both in the number of states
explored by the model checker and in the total runtime.

1 Introduction

The number of states of a concurrent system is exponential in the num-
ber of its components. This fundamental state explosion problem raises a
complexity-theoretic barrier for all algorithmic methods based on state space
traversal. As a consequence, it will always be interesting to investigate new
approaches to circumvent the problem at least in particular situations. Directed
model checking is one such approach that has received a lot of attention re-
cently [1, 2, 4, 7, 10, 13, 17, 20]. The idea is to automatically compute an estimate
of the error distance, which is the minimal number of steps between a given state
and some error state. The state space traversal is then guided (“directed”) by
the estimate. In some situations, the benefit obtained from the guidance drasti-
cally outweighs the cost of the computation of the estimate; for success stories,
we refer to [1, 2, 4, 7, 10, 13, 17, 20].

When we apply directed model checking to concurrent systems, the basic
research question is: how can one compute an interesting estimate of the error
distance without hitting the state explosion problem?

A natural idea is to compute an appropriate abstraction of the concurrent
system and to base the estimate of the error distance between concrete states
on the error distance between corresponding abstract states. We must make
clear, however, what appropriate here means. We are not in a setting where the
state space traversal is performed over abstract states and where the abstraction
of a state aims at preserving the reachability vs. non-reachability of an error
state. Instead, the state space traversal is performed over concrete states and
the abstraction of a state aims at preserving the distance to an error state (we
call it a “distance-preserving abstraction”).

The contribution of this paper is a distance-preserving abstraction for con-
current systems that allows one to compute an interesting estimate of the er-
ror distance without hitting the state explosion problem. The definition of the
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abstraction originates from insights into the interplay between the impact of
an action-based synchronization mechanism on the error distance in concurrent
systems on the one hand and the use of estimated error distances during the
state space traversal on the other hand.

We have implemented the directed model checking method with the distance-
preserving abstraction. Our experiments indicate the usefulness of the estimate
for a number of concurrent systems. We obtain a significant reduction both in the
number of states explored and in the total running time, compared to directed
model checking with an already existing estimate function that does not take
into account synchronization.

2 Preliminaries

2.1 Notation

We verify safety properties over concurrent finite-state systems that are given
as a finite set of processes P . A process is a tuple (Σ, Q, Q0, Qe,→) where Σ is
a finite alphabet of observable actions, Q is a finite set of states including the
initial states Q0 ⊆ Q and error states Qe ⊆ Q, and → ⊆ Q × (Σ ∪ {τ}) × Q is
a transition relation, where τ represents an unobservable internal action not in
Σ. A transition (p, a, p′) ∈ → is denoted by p

a→ p′.
An error occurs if all processes are in one of their error states Qe. Often, one

of the processes acts as the monitor for the safety property, in which case all
other processes have the trivial error condition Qe = Q.

The error distance dP (q) ∈ N∪ {∞} of a state q in a process P is the length
of a shortest path from q to an error state (or ∞ if no such path exists).

We use a simple model of process synchronization where each observable
action is shared by exactly two processes in P . Consider a pair of processes
Pi = (Σi, Qi, Q

0
i , Q

e
i ,→i), i = 1, 2. The parallel composition

P1‖P2 = (Σ1 ∪ Σ2, Q1 × Q2, Q
0
1 × Q0

2, Q
e
1 × Qe

2,→)

synchronizes the two processes on their common action symbols (Σ1 ∩ Σ2):

(p, q) a→ (p′, q′) iff

⎧⎪⎨⎪⎩
p

a→1 p′, q = q′, and a ∈ (Σ1 \ Σ2) ∪ {τ}
p = p′, q

a→2 q′, and a ∈ (Σ2 \ Σ1) ∪ {τ}
p

c→1 p′, q
c→2 q′ for some c ∈ Σ1 ∩ Σ2, and a = τ.

Since parallel composition is associative and commutative, we do not dis-
tinguish systems that are composed from the same set of processes by parallel
composition in different orders. We denote the parallel composition of a set of
processes P = {P1, . . . , Pk} by

�
P∈P P = P1‖ . . . ‖Pk.

2.2 Directed Model Checking

Model checking can be implemented as an instance of the expanding search
algorithm for directed graphs, shown in Figure 1. The algorithm maintains an
open list of visited but not yet expanded states and a closed list of states that
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Algorithm: ExpandingSearch

Input : Initial Node q0 of directed graph G
Output: true if a goal node is reachable from q0, false otherwise
/* Initialization */
Open := (s);
Closed := ();
while Open �= () do

q := Open.pop();
if goal(q) then return true;
Closed.insert(q);
foreach successor q′ of q do

if q′ not in Open or Closed then
Open.insert(q′);

end
end
return false;

Fig. 1. Algorithm ExpandingSearch decides reachability of a goal node from the
initial node of a directed graph, using lists Open and Closed

have been expanded. In each step, a state is chosen from the open list, expanded
(i.e. all its successors that were not yet visited get added to the open list), and
moved to the closed list. Organizing the open list as a FIFO queue results in a
breadth-first traversal of the state space, while a LIFO stack results in a depth-
first traversal.

In directed model checking [4], the open list is organized as a priority
queue ordered by a function h(q), which indicates the desirability of explor-
ing a state q, usually based on an estimate f(q) of dP (q). The best-known
directed traversal algorithms are best-first traversal, where h(q) = f(q), and
A*, where h(q) is the sum of f(q) and the length of the shortest (cur-
rently known) path from an initial state to q. The advantage of A* is that
it finds shortest error traces if the estimate function is admissible, which
means it never overestimates dP (q). Typically, best-first traversal is faster
than A*.

An even stronger property than admissibility is consistency. An estimate
function f is consistent if, for every state q and every successor q′ of q, f(q) ≤
f(q′) + 1. Consistent estimate functions improve the performance of the A*
algorithm, because it is never necessary to reopen states. In general, a state q
has to be put back on the open list if it is encountered again on a shorter path
from the initial state. If the estimate function is consistent, we always find the
shortest path first. Every consistent estimate is also admissible [16].

Our estimate function is based on an abstraction of the system. We de-
fine the abstraction of a process as the quotient with respect to an equiva-
lence relation on the states. The quotient of a process P = (Σ, Q, Q0, Qe,→)
with respect to an equivalence relation ∼ ⊆ Q × Q is the process P/∼ =
(Σ, Q/∼, Q0/∼, {[qe]∼ | qe ∈ Qe},⇒), with
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[p]∼
a⇒ [q]∼ iff p′

a→ q′ for some p′ ∼ p, q′ ∼ q,

where [q]∼ denotes the equivalence class of a state q ∈ Q with respect to ∼, and
Q/∼ = {[q]∼ | q ∈ Q} denotes the quotient set. Every abstraction P/∼ induces
a consistent estimate function f(q) = dP/∼([q]∼) of dP (q) [16].

3 Computing the Abstract System

Our estimate function is based on an abstraction of the system, which we com-
pute in a preprocessing step before the model checking begins. To avoid con-
structing the full state space of the parallel product of all processes, we compute
the abstraction incrementally: each composition of two processes is directly fol-
lowed by an abstraction step.

Algorithm AbstractSystem, shown in Figure 2, describes this “compose-
and-abstract” loop. For now, we ignore the question how the abstraction of a
process is computed (we discuss algorithm AbstractProcess in Section 4)
as well as the question in which order the processes are composed: algorithm
AbstractSystem is parameterized by the composition strategy, a function S
that selects a pair of two different processes from a set of processes. We discuss
the composition strategy in Section 5.

Algorithm AbstractSystem maintains a set of processes P ′, which is ini-
tially equal to the given set of processes P and is eventually reduced to the

Algorithm: AbstractSystem

Input : concrete system, given as a finite set of processes P = {P1, . . . , Pn}
Output: • abstract system, given as process A

• mapping from concrete to abstract states:
α :

∏
P∈P

QP → (QA ∪ {⊥})

/* Initialization */
P ′ := P;
for i = 1, . . . , n do αPi

(q1, . . . , qn) = qi;

/* “Compose-and-abstract” loop */
while |P ′| > 1 do

(P, P ′) := S(P ′);
(C, γ) := AbstractProcess(P‖P ′);
P ′ := P ′ ∪ {C} \ {P, P ′};

αC(q) :=

{
⊥ if αP (q) = ⊥ or αP ′(q) = ⊥

γ(αP (q), αP ′(q)) otherwise;
end

A := the remaining member of P ′;
return A, αA;

Fig. 2. Algorithm AbstractSystem computes an abstract system for a given concrete
system



Directed Model Checking with Distance-Preserving Abstractions 23

singleton set {A}, where the process A represents the abstract system. Associ-
ated with each process P ′ in P ′ is the function αP ′ :

∏
P∈P QP → (QP ′ ∪ {⊥}),

which maps each concrete state q either to its abstraction in process P ′ or to ⊥.
The result αP ′(q) = ⊥ indicates that q is irrelevant, i.e., either q is not reach-
able from the initial states or the error states are not reachable from q. For the
processes in P , αP is initialized with the projection to the respective component
of the product states.

In each iteration of the “compose-and-abstract” loop, two processes P and
P ′ are selected from the current set P ′ by the composition strategy S. Their
parallel composition P‖P ′ is first computed explicitly and then immediately
abstracted by AbstractProcess to process C. In the new process set P ′,
process C replaces P and P ′. Associated with C is the new mapping αC , which
combines the mapping from the states of P‖P ′ to the states of C (which is
provided by AbstractProcess) with the mappings associated with P and P ′.

The results of AbstractSystem are the abstract process A and the function
α, which maps concrete states to abstract states or ⊥. From these we derive the
estimate function

f(q) =

{
∞ if α(q) = ⊥
dA(α(q)) otherwise.

Since the mapping α induces an equivalence on the states of the concrete system
(p∼ q ⇔ α(p) = α(q)), this estimate function is consistent for any choice of a
process abstraction and composition strategy.

4 Computing Abstract Processes

How can we ensure that the error distance of the abstract state provides a good
estimate for the error distance of the concrete state? A natural idea is to use one
state in the abstraction as a representative for each set of concrete states with
the same error distance. While this preserves the error distance in the immediate
abstraction, it changes the synchronization behavior of the process. This, in turn,
changes the error distance in the next iteration of the “compose-and-abstract”
loop, when the abstracted process is composed with some other process. The
straightforward solution of this problem, to identify only bisimilar states and
thus preserve the synchronization behavior of the process, generally does not
sufficiently reduce the state space.

Our approach draws from both ideas. We fix a bound N on the maximal
number of states in the abstraction. Within this bound, our first priority is
to ensure that only states with the same error distance are identified, and our
second priority is to preserve the synchronization behavior.

Algorithm AbstractProcess is shown in Figure 3. As part of the initializa-
tion, AbstractProcess prunes irrelevant states. Process P ′ contains only states
that are both reachable and have paths to some error state. The computation of
the equivalence relation ∼ starts with the equivalence that identifies two states iff
they have the same error distance. During the entire run of the algorithm, we only



24 K. Dräger, B. Finkbeiner, and A. Podelski

Algorithm: AbstractProcess

Input : concrete process P = (Σ, Q, Q0, Qe,→)
Output: • abstract process A,

• mapping from concrete to abstract states:
α : Q → (QA ∪ {⊥})

/* Initialization */
Q′ := {q ∈ Q | dP (q) < ∞ and q reachable from Q0};
P ′ := (Σ, Q′, Q0 ∩ Q′, Qe ∩ Q′,→ ∩ (Q′ × (Σ ∪ {τ}) × Q′));
∼ := {(q, q′) ∈ Q′ × Q′ | min(dP (q),N − 1) = min(dP (q′), N − 1)};
K := |Q′/∼|;
for i = 0, . . . , K − 1 do

Bi := {q ∈ Q′ | min(dP (q),N − 1) = i};
Ri :=∼ ∩(Bi × Bi) ;

end

/* Refinement loop */
repeat

∼′ := ∼;
for i = 0, . . . , K − 1 do

R∗
i := {(q, q′) ∈ Ri | ∀a {[r]∼ | q

a
→ r} = {[r′]∼ | q′

a
→ r′}};

if |Q′/(R1 ∪ · · · ∪ R∗
i ∪ · · · ∪ RK)| ≤ N then

Ri := R∗
i ;

∼ :=
⋃

K−1
i=0 Ri;

end
until ∼ = ∼′ ;

A := P ′/∼;

α(q) :=

{
[q]∼ if q ∈ Q′

⊥ otherwise;
return A, α;

Fig. 3. Algorithm AbstractProcess computes an abstract process for a given con-
crete process

consider refinements of this equivalence. We therefore partition the states into
buckets B0, . . . , BN−1 according to their error distance and consider a separate
equivalence relation Ri =∼ ∩ (Bi × Bi), i = 1, . . . , N − 1, on each bucket.

The subsequent loop refines ∼ until a fixpoint is reached. For each relation
Ri, we tentatively split the equivalence classes in Ri according to the equivalence
classes of their successors in ∼. If the refined equivalence R∗

i does not increase the
total number of equivalence classes beyond the bound N , we refine ∼ according
to R∗

i . The buckets are considered in the order of increasing error distance,
starting with B0. This choice is based on the intuition that paths from states
with high error distance traverse states with lower error distance on their way
to the error state. Inaccuracies introduced for states with high error distance
are therefore likely to affect fewer states than inaccuracies introduced for states
with low error distance.
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When the fixpoint is reached (after at most N iterations of the refinement
loop), the abstraction is computed as the quotient P ′/∼. The function α maps
each relevant concrete state q to its equivalence class [q]∼.

Experiments. To evaluate this approach experimentally, we compare Abstract-
Process to an alternative solution that considers buckets with high error dis-
tance first. The advantage of AbstractProcess is especially clear in systems
with long error paths, such as the Towers of Hanoi example described in Sec-
tion 6. Figure 4 is based on data from the Towers of Hanoi benchmark with
three disks. The graph shows the average difference between estimated and ac-
tual error distance over all states with the same actual error distance in percent
of the actual error distance. The estimate obtained with AbstractProcess
is significantly more accurate than the estimate obtained by considering
buckets with high error distance first. Both estimate functions have an area
around the error states with perfect precision, but the area of the estimate

Fig. 4. Comparison of algorithm AbstractProcess with an alternative solution that
considers buckets with high error distance first. The graph shows the average differ-
ence between estimated and actual error distance over all states with the same actual
error distance in percent of the actual error distance. (Data from the Towers of Hanoi
benchmark with three disks and a bound of 40 states.)
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obtained with AbstractProcess is twice as large, resulting in a perfectly
informed estimate at error distance 9, where the alternative solution already
reaches its peak imprecision of 57%.

5 The Composition Strategy

Algorithm AbstractProcess is guaranteed to preserve the error distance in
the immediate abstraction, but may cause changes to the error distance once
the abstract process is composed with further processes. The goal of the com-
position strategy is to minimize the resulting inaccuracy by choosing a pair of
processes such that the error distance in their parallel composition provides a
good estimate of the error distance in the completely composed system.

A first observation is that in processes with trivial error condition Qe = Q,
the local error distance is 0 for all states. We therefore only consider pairs of
processes where at least one process has a non-trivial error condition. Among
these, we choose a pair such that their joint actions occur close to error states.
The result of this strategy is that we build an area close to the error states where
no synchronization is necessary to reach the error. Within this area, the local

Fig. 5. Comparison of the ranking-based composition strategy with the default strat-
egy, which composes processes in the order in which they are defined. The graph shows
the average difference between estimated and actual error distance over all states with
the same actual error distance in percent of the actual error distance. (Data from the
Arbiter Tree benchmark with eight processes and a bound of 20 states.)



Directed Model Checking with Distance-Preserving Abstractions 27

error distance accurately reflects the error distance in the completely composed
system.

To implement this strategy, we introduce a ranking on the actions

r(P, a) = min{dP (q) | q ∈ Q,∃q′ ∈ Q : q′
a→ q}.

A low ranking indicates that the action may be taken in close proximity of the
error. We associate with each pair (P1, P2) of two different processes the weight

min{max{r(P1, a), r(P2, a)} | a ∈ Σ1 ∩ Σ2}

and choose a pair of processes that minimizes this weight.

Experiments. We compare the described ranking-based strategy with the default
strategy that composes processes in the order in which they are defined. The
advantage of the ranking-based strategy is especially clear in systems where
only few processes have a non-trivial error condition. Figure 5 is based on data
from the Arbiter Tree benchmark (see Section 6) with eight processes, where
only two out of the eight processes have non-trivial error conditions. The graph
shows the average difference between estimated and actual error distance over all
states with the same actual error distance in percent of the actual error distance.
The ranking-based strategy results in an estimate function that is roughly twice
as accurate as the estimate function resulting from the default strategy.

6 Experiments

Our collection of benchmarks contains standard examples for distributed systems
(Arbiter Tree, Towers of Hanoi), randomly generated systems, and industrial case
studies. We have implemented our algorithms in an experimental version of the
model checker UPPAAL [14].

We evaluate our estimate function both for best-first traversal (Table 1) and
for A* (Table 2). For each benchmark, the tables show the running time, the
number of explored states, and the length of the discovered error trace. We
compare our estimate function with two different bounds (N50 and N100) to
randomized depth-first traversal (rDF) and directed model checking with the
FSM estimate function [7] (FSM).

Our experiments were carried out on an Intel Xeon 3.06 Ghz system with
4 GByte of RAM. For all experiments, we set a time limit of 30 minutes. In
the case of rDF, the table shows the average runtime over three runs. For some
benchmarks, some but not all of these runs hit our time limit. These runs were
added into the runtime average with the 30-minute timeout as their runtime.

Arbiter Tree. The Arbiter Tree [19] establishes mutual exclusion between 2k

client processes. The processes are arranged in a binary tree of height k, where
each leaf node is a client and each internal node is an arbiter that ensures mutual
exclusion between its two children, passes requests and releases upward, and
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Table 1. Experimental Results: Comparison of best-first traversal using our estimate
function for two different bounds (N50 and N100) to best-first traversal using the FSM
estimate function (FSM) and to randomized depth-first traversal (rDF)

explored states seconds trace length
Exp rDF FSM N50 N100 rDF FSM N50 N100 rDF FSM N50 N100
A2 85 54 53 46 0.01 0.01 0.06 0.10 46 45 37 25
A3 6878 420 174 187 0.05 0.05 0.24 0.56 323 183 79 43
A4 1994 1.3e5 1.5e5 10633 0.06 1.01 3.16 2.78 429 1003 509 157
A5 *** 9.9e5 7619 10673 1198 12.48 5.66 26.73 *** 5213 3869 1151
A6 * ** 4.3e5 5.2e5 ** ** 62.30 196.9 * ** 2.0e5 55535
H4 3027 4996 1283 711 0.03 0.05 0.07 0.09 573 761 181 125
H5 52417 57600 6497 6368 0.24 0.24 0.13 0.18 5528 3705 381 405
H6 3.1e5 5.0e5 1.1e5 63403 1.39 1.92 0.65 0.53 31225 26605 1445 1317
H7 1.5e6 4.5e6 7.4e5 7.5e5 7.50 20.37 4.09 4.32 2.3e5 2.0e5 3377 3177
H8 2.9e7 1.6e7 8.6e6 4.5e6 336.2 132.3 60.61 29.34 1.8e6 1.5e6 12073 6705
R5 5840 4177 697 443 0.04 0.04 0.05 0.06 936 154 62 64
R6 71098 19903 395 363 0.32 0.11 0.07 0.10 858 97 43 41
R7 3.1e5 83582 6656 8199 1.42 0.32 0.12 0.17 1040 81 56 50
R8 1.5e6 2.7e5 2.2e5 1.2e5 9.13 1.01 1.32 0.87 1453 138 58 59
R9 *** *** 2.9e5 4.9e5 336.3 80.43 2.05 3.64 *** *** 77 80
R10 *** *** *** 2.6e5 496.3 71.83 38.87 2.20 *** *** *** 122
M1 23894 31927 19063 12780 0.54 0.45 0.35 0.23 926 1349 129 74
M2 1.6e5 2.0e5 46545 46337 2.19 2.92 0.74 0.86 3717 7695 131 190
M3 68313 1.7e5 64522 42414 0.92 2.34 0.99 0.80 3589 5690 119 92
M4 2.0e5 5.8e5 1.7e5 1.3e5 2.71 7.34 2.49 1.86 14415 25819 146 105
N1 43655 42931 27275 1660 1.56 1.62 1.02 0.15 985 1803 187 194
N2 1.7e5 2.6e5 1.0e5 67168 5.61 9.43 3.55 2.16 4611 9279 218 138
N3 1.7e5 1.3e5 1.4e5 81804 5.85 4.96 4.99 2.69 3794 11656 178 130
N4 1.0e6 1.5e6 4.8e5 3.8e5 34.71 51.10 17.91 11.07 17851 41986 234 169
C1 25122 19263 871 810 0.24 0.24 0.30 0.49 1087 1442 188 191
C2 65275 68070 1600 2620 0.56 0.59 0.40 1.03 886 2032 203 206
C3 86439 97733 2481 2760 0.74 0.82 0.47 1.14 786 1663 204 198
C4 8.5e5 9.8e5 22223 25206 6.52 6.90 0.91 1.83 1680 5419 247 297
C5 8.3e6 8.8e6 1.6e5 1.6e5 66.41 66.85 2.90 3.97 1900 14163 322 350
C6 *** ** 1.7e6 1.2e6 1181 ** 18.32 14.87 *** ** 480 404
C7 * ** 1.3e7 1.3e7 * ** 156.1 162.4 * ** 913 672
C8 * ** 1.4e7 1.2e7 * ** 163.0 155.3 * ** 1305 2210
C9 * ** ** 3.6e7 * ** ** 1046 * ** ** 1020
* timeout; ** out of memory; *** timeout on some instances

passes grants downward. One additional process handles the requests of the root
node by immediately sending a grant upon receiving a request and then waiting
for the release. The benchmarks A2 – A6 contain arbiter trees of height 2 – 6,
with an exponentially growing number of processes (A2 has 8 processes, A6 has
128). We specified mutual exclusion for one particular pair of client processes
and introduced a fault in the form of an incorrect client that erroneously sends
several release signals when done.
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Table 2. Experimental results: Comparison of A* traversal using our estimate function
for two different bounds (N50 and N100) to A* traversal using the FSM estimate
function (FSM)

explored states seconds trace
Exp FSM N50 N100 FSM N50 N100 length
A2 498 215 46 0.02 0.06 0.10 25
A3 81883 32106 20658 0.41 0.48 0.73 35
H4 6289 3876 3348 0.06 0.08 0.10 105
H5 67202 52348 48361 0.29 0.32 0.36 229
H6 627669 540286 516242 2.46 2.80 2.82 481
H7 5.8e6 5.4e6 5.3e6 27.08 32.29 31.48 989
R5 35784 4642 2392 0.15 0.06 0.08 27
R6 174589 6047 4295 0.69 0.07 0.12 22
R7 764727 14037 12083 3.30 0.16 0.20 27
R8 2.1e6 98420 60322 12.94 0.67 0.52 23
R9 ** 93806 70578 125.95 0.71 0.69 25
R10 ** 271935 279693 88.46 2.22 2.47 25
M1 50147 25103 23917 0.79 0.52 0.48 50
M2 223034 100513 94426 3.30 1.82 1.82 51
M3 231357 130747 129269 3.42 2.43 2.51 53
M4 971736 561599 516178 13.99 10.57 9.54 54
N1 99840 56550 52564 5.59 3.44 3.03 50
N2 446465 238369 218351 25.30 14.86 13.21 53
N3 473117 286506 257530 27.04 17.86 15.23 53
N4 2.0e6 1.2e6 1.1e6 117.43 74.83 70.88 56
C1 35768 13863 13455 0.37 0.42 0.62 55
C2 110593 38483 36888 0.99 0.76 1.37 55
C3 144199 44730 42366 1.27 0.91 1.54 55
C4 1.4e6 368813 354091 11.23 4.30 5.05 56
C5 1.3e7 2.8e6 2.7e6 116.28 29.60 29.97 57
C6 * 2.8e7 2.7e7 * 377.77 364.15 57
* (**) out of memory (on some instances)

The error in a tree with 128 processes is found in approx. 1 minute using
a bound of 50 states. Because not all processes contribute to reaching an er-
ror state, this low bound already produces a well-informed heuristic. Using the
higher bound of 100 states is expensive: since in this benchmark the length of
the shortest error path is only linear in the height of the tree, computing the
estimate involves composing a large number of processes with few and therefore
large buckets. The more accurate estimate produced by N100 does, however,
lead to shorter error traces.

The Towers of Hanoi. Benchmarks H4 – H8 model the standard problem of
moving a stack of differently sized disks from one of three columns to another,
with the constraints that the disks may only be moved one at a time and a disk
may never be stacked on top of a smaller disk. We modeled the problem with
one process for each disk. A disk can at any time send a request upwards in the
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hierarchy of smaller disks to check whether itself and a target column is clear of
smaller disks. If it gets an “ok” signal, it moves from its current column to the
target column. To find a trace that leads to the target configuration we specify
the target configuration as the error condition. In this benchmark, the length of
the shortest error path grows exponentially with the number of processes. This
explains why the bound N100 performs significantly better than the bound N50
in the largest benchmark H8.

Randomly Generated Systems. We obtained a further suite of benchmarks by
randomly generating systems of processes. The parameters of the construction
are the number of processes, the minimum and maximum number of states of the
processes, and the seed for the random number generator (the Mersenne Twister
[15]). Excluded from the benchmarks are systems with no error paths and sys-
tems that contain independent subsystems, i.e., systems where the process graph,
with edges between processes that have shared actions, is not connected.

Benchmarks R5 – R10 each consist of 15 different randomly generated sys-
tems, with the size ranging from 5 (R5) to 10 (R10) processes. We set the
number of actions to twice the number of processes, the minimum/maximum
size to 3/10, and averaged the results over the 15 systems for each size. The only
method besides our estimate function that also finds the error in all systems
with 10 processes is rDF, which, however, takes significantly more time.

A* is usually much more expensive than best-first traversal. In this bench-
mark, however, A* results in a much more focused traversal, as the number of
visited states shows. As a result, A* even becomes faster than best-first traversal.

Industrial Examples. Henning Dierks provided us with a collection of UPPAAL
benchmarks from two industrial case studies: A real-time mutual exclusion pro-
tocol in a distributed system with asynchronous communication [3] (benchmarks
M1 – M4 and N1 – N4) and a tramway controller from the UniForM project [11]
(C1 – C9). The two case studies add real-time constraints and integer variables
to the discrete setting of the other benchmarks: the faults in both case studies
are introduced as erroneous time bounds. Even though our implementation is
not yet optimized for this type of system (in the computation of the estimate,
we simply ignore the clocks and use a flat representation of the integer values
as discrete states), the directed model checker performs remarkably well, solving
several benchmarks that were previously out of UPPAAL’s reach.

7 Related Work

Several researchers have investigated techniques to guide the model checker.
Typically, the guidance is application-specific and must be provided by the user.
For example, Behrmann et al [1] describe UPPAAL case studies in which a
dramatic reduction of the state space was achieved by a user-provided estimate
of the error distance. Bloem et al [2] use hints in the form of assertions on the
primary inputs and state variables of the model: the transition relation can then
be underapproximated (by ignoring transitions out of states that violate the
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hint) or overapproximated (by allowing any transition from a state that violates
the hint). Similarly, Kaltenbach and Misra [10] use hints in the form of regular
expressions over the actions of the program.

Directed model checking with an automatically computed estimate of the er-
ror distance has been pioneered by Edelkamp, Leue, and Lluch-Lafuente with the
tool HSF-SPIN [6]. In addition to several simpler heuristics for safety and live-
ness properties (including deadlock-detection), HSF-SPIN implements the FSM
heuristic [7]. The FSM heuristic approximates the error distance by the maxi-
mum (or, alternatively, the sum) of the error distances in individual processes
and is a significant improvement over program-independent estimates like the
Hamming-distance [20]. The drawback of the FSM heuristic is that it ignores the
synchronization between the processes. It is therefore less useful when searching
for errors that require a complex interaction between multiple processes.

Similar to our approach, the pattern databases of Qian and Nymeyer [17]
and the abstraction databases by Edelkamp and Lluch-Lafuente [5] also make
use of an abstraction of the system. The error distances in the abstract state
space are stored in a table, from which they are read off during the traversal
of the concrete state space. Our abstraction technique extends these methods:
while both pattern databases and abstraction databases assume that a partic-
ular abstraction function is chosen beforehand, we automatically compute an
abstraction function that aims at preserving the error distance.

Related to our incremental abstraction technique is the Incremental Compo-
sition and Reduction (ICR) Method [18], which reduces the partially composed
system after each composition of two processes to an observationally equivalent
process. Since ICR maintains an accurate representation of the behavior of the
partially composed system (which often requires more states than the completely
composed system), ICR is only feasible if the user provides additional constraints
on the process interaction [8]. By contrast, our method, which only maintains
an approximate representation of the behavior, is fully automatic.

In very recent work, Kupferschmid et al [12] investigate using an estimate
function from AI planning for directed model checking. The estimate is based on
a relaxation of the system in which every state variable, once it has obtained a
value, keeps that value forever. Because Kupferschmid et al’s estimate function
is computed on-the-fly, it can be used in systems with infinite data types (such
as unbounded integers), which are currently out of our scope. On the other
hand, our precomputed abstraction reflects the process synchronization more
accurately, which leads to much better performance in systems with complex
process interaction, such as the Towers of Hanoi benchmark (see Section 6).
There is obvious potential in a combination of the two approaches, which we
plan to explore in future work.

An important complement to directed model checking with estimates
of the error distance are structural heuristics as implemented in the Java
PathFinder [9]. These heuristics exploit the program structure for example by
maximizing thread interleavings and code coverage.
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8 Conclusion

Abstraction has always been considered a key in fighting the state explosion
problem. Here, we have given a new twist to abstraction. We traverse abstract
states in order to compute an estimate of the error distance, and then traverse
concrete states in order to find an error path. The quality of an abstraction is not
determined by a Boolean value (“does the abstraction preserve the reachability
of an error state by the initial state?”). It is rather determined by the ratio
between the estimated and the actual error distance.

While we are still in the beginning of the systematic design of such
abstractions, this paper has made an initial contribution. It presents a distance-
preserving abstraction for concurrent systems that allows one to compute an inter-
esting estimate of the error distance without hitting the state explosion problem.
As detailed in the paper, the definition of the abstraction originates from insights
into the interplay between the impact of an action-based synchronization mecha-
nism on the error distance in concurrent systems on the one hand and the use of
estimated error distances during the state space traversal on the other hand.

We have implemented the resulting directed model checking method, and we
have led a series of experiments that indicate the usefulness of an estimate that
takes into account synchronization.

Fig. 6. Running time of the directed model checker for different bounds on the abstract
state space. (Data from a randomly generated system with eight processes.)
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With abstraction, one always encounters a tradeoff between cost and preci-
sion. A potential advantage of our abstraction method is that it is parameterized
(by the size of the abstract state space), and that one can fine-tune the para-
meter (and thus the accuracy of the abstraction). To demonstrate the tradeoff
on an example, we took a randomly generated system with eight processes and
changed the parameter gradually. Figure 6 shows the corresponding running
times. Initially, the runtime decreases with a increasing parameter. After the
sweet spot in the tradeoff is reached (in the region between 60 and 80), the run-
time increases with increasing parameter. More experience is needed in order to
provide systematic ways to choose the parameter.
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34 K. Dräger, B. Finkbeiner, and A. Podelski

11. B. Krieg-Brückner, J. Peleska, E.-R. Olderog, and A. Baer. The UniForM work-
bench, a universal development environment for formal methods. In J. Wing,
J. Woodcock, and J. Davies, editors, FM’99 – Formal Methods: World Congress
on Formal Methods in the Development of Computing Systems, number 1709 in
Lecture Notes in Computer Science, 1999.

12. S. Kupferschmid, J. Hoffmann, H. Dierks, and G. Behrmann. Adapting an AI plan-
ning heuristic for directed model checking. Proceedings of SPIN’06 (this volume).

13. A. L. Lafuente. Directed Search for the Verification of Communication Protocols.
PhD thesis, Institute of Computer Science, University of Freiburg, June 2003.

14. K. Larsen, P. Petterson, and Wang Yi. Uppaal in a nutshell. STTT – International
Journal on Software Tools for Technology Transfer, 1(1+2):134–152, Dec. 1997.

15. M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation, 8(1):3–30, 1998.

16. J. Pearl. Heuristics. Morgan Kaufmann, San Francisco, CA, 1983.
17. K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction

and symbolic pattern databases. In K. Jensen and A. Podelski, editors, Proceedings
of TACAS’04, number 2988 in Lecture Notes in Computer Science, pages 497–511,
2004.

18. K. K. Sabnani, A. M. Lapone, and M. Ü. Uyar. An algorithmic procedure for
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Abstract. There is a growing body of work on directed model checking, which
improves the falsification of safety properties by providing heuristic functions
that can guide the search quickly towards short error paths. Techniques of this
kind have also been made very successful in the area of AI Planning. Our main
technical contribution is the adaptation of the most successful heuristic function
from AI Planning to the model checking context, yielding a new heuristic for di-
rected model checking. The heuristic is based on solving an abstracted problem
in every search state. We adapt the abstraction and its solution to networks of
communicating automata annotated with (constraints and effects on) integer vari-
ables. Since our ultimate goal in this research is to also take into account clock
variables, as used in timed automata, our techniques are implemented inside UP-
PAAL. We run experiments in some toy benchmarks for timed automata, and in
two timed automata case studies originating from an industrial project. Compared
to both blind search and some previously proposed heuristic functions, we consis-
tently obtain significant, sometimes dramatic, search space reductions, resulting
in likewise strong reductions of runtime and memory requirements.

1 Introduction

When model checking safety properties, the ultimate goal is to prove the absence of
error states. However, to do so one has to explore the entire state space of the appli-
cation under consideration. It is therefore essential to use an efficient representation
and implementation of that state space. Prominent examples of such implementations
are the SPIN (e.g. [1]) and UPPAAL (e.g. [2]) tools. SPIN handles the Promela lan-
guage, describing systems of communicating processes. UPPAAL handles networks of
extended timed automata, which is a formalism with less complex communication than
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Promela, but where the processes can be annotated with real-valued clock variables.
Both languages also feature integer variables.

Enumerating the entire state space is often not feasible in practise. A potentially
much easier task is to only try to detect error states, i.e., to falsify the safety property. An
error may be found by exploring only a small fraction of the search space. Algorithms
that are good at detecting errors can be used for debugging purposes. They can even
be good for proving an application error-free, because they can be used to handle the
intermediate iterations in the abstraction refinement life cycle, i.e. those iterations in
which spurious error states exist.

There are two main issues to be addressed: first, the search space size, i.e. the num-
ber of search states that need to be considered before the error state is found; and second,
the length of the detected path to the error state. The search space size determines the
scalability of the search. Short error paths are preferred for debugging; in abstraction
refinement, they provide better information about what aspects of the abstraction should
be refined. Ideally, one wants an optimal, i.e. a shortest possible, path to an error.

Both search space size and error path length can be addressed by the order in that
the search states are explored. One defines a heuristic function h, a function that maps
states to integers, estimating the state’s distance to the nearest error state. The search
then gives a preference to states with lower h value. There are many different ways of
doing the latter, of which we consider the wide-spread methods A∗ search and greedy
search. In the former, search nodes s are explored by increasing value of c(s) + h(s)
where c(s) is the length of the search path on that s was reached. If h is admissible,
i.e., if it never overestimates the real distance to the nearest error state, then A∗ is
guaranteed to return an optimal error path. In greedy search, search nodes are explored
by increasing value of h(s). This gives no guarantee on the length of the detected error
path, but tends to explore less search states in practise.

The application of heuristic search to model checking was pioneered a few years ago
by Edelkamp et al [3, 4], christening this research direction directed model checking,
and inspiring various other approaches of this sort, e.g. [5, 6, 7]. The main difference
between all the approaches is how they define and compute the heuristic function: How
does one estimate the distance to an error state? Different definitions make all the
difference because no heuristic can work well in all examples, and the best one can
hope to do is to define a range of heuristics that cover (work well in) an as large as
possible range of examples.

Edelkamp et al [3, 4] work in the context of SPIN. They propose to base the distance
estimation on the graph-distances within each single process. For process i, let d(i) be
the distance of i’s start location to its target location, when ignoring all edge guards
(if there is no target location, set d(i) := 0). Then an admissible heuristic function,
called dL, is defined as maxid(i), and a non-admissible heuristic function, called dU ,
is defined as

∑
i d(i). We implemented these heuristic functions in UPPAAL, taking

the d(i) to be the graph distances in the individual automata.
Note that dL and dU are rather crude approximations of the system semantics.

They completely ignore communication and integer variables. Our main contribution
in this paper is an approximation technique that does not do that. The approximation
is more costly – i.e., computing the heuristic function takes more runtime than what
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is needed for dL and dU – but, as we will see, this often pays off in terms of much
smaller search spaces. We obtain our approximation by adapting the most successful
heuristic method [8, 9] from the area of AI Planning, where heuristic search has been
overwhelmingly successful in the past decade, in particular winning all the planning
competitions (e.g. [9, 10, 11]).

The heuristic method is based on what AI people call a relaxation, which is the same
as the model checking term abstraction: an over-approximation. The abstraction tech-
nique used is, however, quite different from what one usually uses in model checking,
due to the very different way of using the abstracted task. Namely, the heuristic val-
ues are generated by solving the abstract problem in every search state, and taking the
length of the abstract solution as the distance estimate. To be able to solve the abstract
problem in every search state, of course the abstraction has to be very coarse. In our
particular case, the abstraction assumes that every state variable, once it has obtained a
value, keeps that value forever. Which means, in the abstraction the “value” of any vari-
able at any time point is not a member but a subset of the variable’s domain. The subsets
grow monotonically as abstract transitions are taken. We prove that, like in the planning
context, solving the abstract problem optimally, i.e., finding an optimal abstract error
path, and thereby computing an admissible heuristic function, is still NP-hard, even if
the addressed formalism allows only parallel automata with communication. For paral-
lel automata with communication and integer variables, we define two polynomial-time
methods for approximating the length of an optimal abstract error path. We call the re-
sulting heuristic functions hL and hU . The former is a lower bound on the length of an
optimal abstract error path, the latter is an upper bound on that length; hL is admissible,
hU is not.

Our heuristics are implemented inside the UPPAAL system, since our goal in this
research is to speed up model checking of (networks of extended) timed automata.
Ultimately, of course, we want to develop heuristics that also take into account the
clock variables. We are currently investigating that direction; it is highly non-trivial in
our context due to the nature of our abstraction. Since timed transitions are continuous,
the value subset of a clock x will be [0,∞) as soon as one reaches a location without an
invariant limiting x; we discuss this in more detail below. As said, so far we can offer
heuristics that take into account communication and integer variables. To the best of our
knowledge, no similar heuristics were developed in any other area of model checking
(the differences to the existing other heuristics are outlined in the related work section).

In the standard versions of UPPAAL, the search order can be fixed to either depth-
first (DF) or breadth-first (BF).1 We test our implementation in networks of extended
timed automata. We consider a few toy examples, and two realistic case studies coming
from an industrial project. We evaluate the performance of different UPPAAL config-
urations finding optimal error paths, and of UPPAAL configurations finding (possibly)
sub-optimal error paths. The former are BF, and A∗ with hL or dL; the latter are ran-
domised DF, and greedy search with hL, hU , dL, and dU (remember that dL and dU

1 There is also a version doing heuristic search [12], but for that the user has to provide the
heuristic function manually, in difference to our fully-automatic technology. Note that a suc-
cessful manual heuristic specification requires inside knowledge on the side of the user, and
careful tuning.
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were defined by Edelkamp et al [4]). Of the optimal configurations, BF and A∗ with dL

perform roughly similarly except in the toy examples; A∗ with hL brings a moderate
runtime advantage, but much smaller search spaces, enabling success in one more ex-
ample due to the lower memory usage. For the (potentially) sub-optimal configurations,
our results are much stronger. While the dL and dU search orders bring hardly any ad-
vantage over DF in our industrial case studies, both hL and hU yield dramatic search
space reductions, and with that better runtimes and the ability to solve more examples.
At the same time, the error paths found with hL and hU are orders of magnitude shorter
than those found with DF, dL, and dU .

The next section briefly gives our notations. Sections 3 and 4 formally define the
abstraction used, and the algorithms computing the heuristic functions, respectively.
Section 5 describes our empirical results, Section 6 discusses related work. Section 7
closes the paper. Most proofs are replaced in the text by short proof sketches; the full
proofs are available in a technical report [13].

2 Notations

We assume the reader is roughly familiar with timed automata and their commonly used
extensions. We give a brief description of the particular formalism treated in our current
implementation. We use (a slight variation of) the terminology and notation given by
Behrmann et al [14].

We treat networks of timed automata with binary synchronisation and integer vari-
ables. For the sake of presentation herein, we restrict atomic expressions over integer
variables to variables, variable increments/decrements, or constants. That is, we allow
only comparisons like v ≤ v′ or v = c, and assignments like v := v′, v := c or
v := v ± 1. Our implementation in fact deals with arbitrary linear expressions over
the variables; for the sake of readability, we omit these and only explain the extensions
in the text. As mentioned earlier, the heuristic function so far completely ignores the
clock variables (the reasons for this are explained in Section 3.2). We therefore don’t
give formal notations for these variables. Our notations are as follows. The timed au-
tomata share a set A of actions, and a set V of integer variables. Each v ∈ V has a
domain dom(v). Each automaton i has a location set L(i), a start location l0(i), and
a set of edges E(i). Each edge is annotated with an action a ∈ A, with a guard g,
and with an effect f . The guard is a conjunction of conditions of the form x 	
 y
where x, y ∈ Z ∪ V and 	
∈ {<,≤, =,≥, >, �=}. The effect is a list of assignments
of the form v := v′, v := c or v := v ± 1, where v, v′ ∈ V and c ∈ Z. Each vari-
able v occurs on the left hand side of at most one such assignment. The semantics are
defined as obvious. Transitions are asynchronous and triggered by an edge annotated
with a special void action, or synchronous and triggered by two edges with inverse
actions.

The safety properties we can verify take the form of (negated) edge guards plus
location vectors, i.e., our implementation can check whether there exists a reachable
state in that the automata are in specified locations, and that satisfies a conjunction of
conditions x 	
 y. We call the former the target locations, and the latter the target
formula. A path of transitions is called a solution if it leads from the start state to a state
complying with target locations and target formula.
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3 Abstraction

We introduce the abstraction method, called monotonicity abstraction, underlying our
implemented heuristic function. We first give a high-level description of the abstraction
in a generic way, then we define it as currently used in the context of networks of
automata.

Before we start, let us remark that the monotonicity abstraction was first invented
in AI Planning for a formalism called STRIPS, under the name “ignoring delete lists”
[8]. In STRIPS, the “delete lists” are effect instructions that make a boolean variable
FALSE. This simplifies the problem because, in STRIPS, variables are only ever re-
quired to be TRUE. The monotonicity abstraction we describe below is a generalisation
of this abstraction approach. We remark that the generalisation is not published in the
AI Planning literature; it is, in spirit, somewhat similar to the framework presented
in [15].

3.1 The Monotonicity Abstraction

The abstraction is based on the simplifying assumption that every state variable, once
it obtained a value, keeps that value forever. The value of a variable is no longer an
element, but a subset of its domain. That subset grows monotonically over transition
applications – hence the name of the abstraction.

In a little more detail, in general a transition system (a planning task, a system of
timed automata, a piece of program code, etc.) can be viewed as given by a set of state
variables, a set of transition rules, a start state, and a target formula. The transition rules
have a guard – a formula out of some class of valid (non-temporal) formulas – and an
effect – an instruction how the variable values change when the rule is applied. States
are value assignments to the variables, the target formula is a valid formula. A solution
is a path of transitions that, when applied to the start state, ends in a state that satisfies
the target formula.

Under the monotonicity abstraction, the semantics of a transition system as above
are changed as follows. States now map each variable to a subset of its domain. The start
assignment contains the single value assigned by the start state. A formula evaluates to
TRUE in a state if there exists a variable value vector in the state so that the formula
evaluates to TRUE when inserting these values. Executing an effect instruction becomes
a set union operation, where the new value of each variable x is its old value (a domain
subset) plus the new value assigned by the effect. If the effect outcome depends on
variables, then all possible value vectors for these variables are used, each yielding a
value for x.

E.g., say we have one integer variable v, and one transition with guard v = 0
and effect v := v + 1. The start state is v = 0, and the target formula is v = 2.
Obviously, there is no solution. There is, however, a solution in the abstraction. The
start assignment is {0}. After one transition, this becomes {0, 1}. Since the transition
guard is abstracted to ∃c ∈ s(v) : c = 0, the transition can be applied a second time,
and we get the state {0, 1, 2}: the new values obtained for v are 1 (inserting 0 into the
effect right hand side) and 2 (inserting 1). In this state the abstract target formula, taking
the form ∃c ∈ s(v) : c = 2, evaluates to TRUE.
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It is not difficult to see that the monotonicity abstraction induces an over-approxima-
tion of the real transition system: every solution path in the real system corresponds to
a solution path in the abstract system. We will state this formally below, for our abstrac-
tion of timed automata. In many cases, deciding solution existence is a polynomial-time
problem under the abstraction, making it feasible to solve the abstract problem in every
search state.2

3.2 The Monotonicity Abstraction in Timed Automata

Before we give our definitions, consider at a higher level of abstraction what happens
if we apply the above abstraction to a system of timed automata. Under the abstraction,
each automaton will (potentially) be in several locations in a state. The integer variables
will have several possible values in a state. The clock variables will only accumulate
new values. Transitions will be applicable as soon as one of the possible value vectors
satisfies the guard.

Thinking a little more about the clocks, one sees that they are likely to trivialise
very quickly under the abstraction. The reason for that are the timed transitions: as time
passes, the clocks accumulate all the passing time points. After waiting from time point
u to time point u + d, the new clock value subsets contain the entire interval [u, u + d].
So in a location with invariant I , the clock value subsets immediately gather all values
up to the upper bound specified by I . Now, all clock values are 0 initially. Since time
passes continually, therefore the clock value subsets will always have the form [0, max]
(where max is the latest time point yet reached), containing no information other than
max. As soon as a location with empty invariant is reached, max will become infinite,
i.e., the clock value subsets will be the entire time line.

For the above, reasoning about clock values under the abstraction is not likely to
contribute useful information, unless additional techniques are used. We outline an idea
for such additional techniques in Section 7. For now, we ignore the clocks altogether
(inside the heuristic function). While this is undesirable, as said our empirical results
demonstrate that taking (abstract) account of automaton locations, synchronisation, and
integer variables can yield useful search guidance.

Our definitions are straightforward and read as follows. We denote abstract con-
structs with a superscribed + to indicate the additivity of the abstraction. An abstract
state s+ assigns each automaton i a location subset s+(i) ⊆ L(i). Each integer vari-
able v is assigned a value set s+(v) ⊆ dom(v). Formulas (conjunctions of conditions)
are abstract by, “locally”, existentially quantifying the variables in each condition sep-
arately. E.g. a formula v 	
1 v′ ∧ v 	
2 c is abstracted to ∃c1 ∈ s+(v), c′1 ∈ s+(v′) :
c1 	
1 c′1 ∧ ∃c2 ∈ s+(v) : c2 	
2 c. That is, we allow achievement of each condition
in separate. When, “globally”, quantifying the variables over the entire formula, one
gets an NP-complete constraint problem, so there is no way around making further ab-
stractions. We chose to do local quantification mainly because it is very simple and can
be implemented efficiently. Also, it comes in handy also for linear arithmetic. When

2 Under certain conditions, checking satisfaction of a formula becomes NP-hard in the abstrac-
tion, due to the additional existential quantification. In particular, this is the case in our context
of timed automata. We make an additional simplification to get around this, see the explanation
below.
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allowing linear arithmetic between integer variables, checking even a single condition
∃x̄ : f(x̄) = c is NP-hard. This isn’t usually a problem since the number of variables in
the expressions (f(x̄)) is typically small, up to four maybe.3 However, the total number
of variables in a conjunction of expressions can become quite big. So it is convenient to
address the single expressions in separate.

An assignment v := c results in s+(v) := s+(v) ∪ {c}. An assignment v := v′

results in s+(v) := s+(v) ∪ s+(v′). An assignment v := v + 1 results in s+(v) :=
s+(v) ∪ {c + 1 | c ∈ s+(v)}, v := v − 1 results in s+(v) := s+(v) ∪ {c − 1 | c ∈
s+(v)}. Values not contained in dom(v) are removed from the result. An asynchronous
transition of automaton i from location l to l′ is enabled if l ∈ s+(i), and the respective
abstract edge guard holds in s+. The effect assignments are executed as above, and
s+(i) := s+(i)∪{l′} is set. A synchronous transition of automaton i from location l(i)
to l′(i), and of automaton j from location l(j) to l′(j), is enabled if l(i) ∈ s+(i), l(j) ∈
s+(j), and both respective abstract edge guards hold in s+. The effect assignments are
executed as above, and s+(i) := s+(i) ∪ {l′(i)}as well as s+(j) := s+(j) ∪ {l′(j)}
are set.

When the start state is s0, s+
0 is given by s+

0 (i) = {s0(i)}, and s+
0 (v) = {s0(v)}.

A path of successively enabled transitions from s0 is a abstract solution if it ends in a
state s+ in which the abstract target formula holds.

Proposition 1. Given a network of timed automata with binary synchronisation and
integer variables, a start state, target locations, and a target formula. If t1, . . . , tn is a
solution then t1, . . . , tn is also an abstract solution.

Proof Sketch: The variable values achieved by t1, . . . , tn in the abstraction subsume
the values achieved in reality.

By Proposition 1, every solution in the real search space is also contained in the abstract
search space. So the length of an optimal abstract solution is an admissible heuristic
function. We will come back to this below.

Consider Figure 1 as an example. The top automaton needs to go through repeated
circles. More precisely, if the bottom automaton has n locations, then the real solution
takes 2(n− 1) steps, half of which are synchronized between both automata. However,
an abstract solution can be obtained in only n steps: the top automaton goes to the right
once, and can then go to the left n times in sequence since its right location remains in
the reached location subset.

a? a?

a!

Fig. 1. A simple example where hL and hU deliver bad heuristic values

3 Also, one can handle the expressions in an incremental way, see Section 4.
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We can decide in polynomial time if there exists an abstract solution or not.

Theorem 1. Let TASolEx+ denote the following problem. Given a network of timed au-
tomata with binary synchronisation and integer variables, a start state, target locations,
and a target formula. Is there a abstract solution?

TASolEx+ is in P.

Proof: A polynomial solution algorithm is described in Section 4.

The polynomial solution algorithm forms the basis of our heuristic functions: for a
heuristic function, what we want to know is not primarily if there is an abstract solu-
tion, but what the length of an abstract solution is (if there is one). Abstract solutions
may contain arbitrarily many useless transitions, and we want to know what an optimal
abstract solution is. We call the length of such a solution, for a state s, h+(s). Unfortu-
nately, computing h+ is still hard.

Proposition 2. Let TASolMin+ denote the following problem. Given a network of timed
automata with binary synchronisation, a start state, a target formula, and an integer b.
Is there an abstract solution of length at most b?

TASolMin+ is NP-hard.

Proof Sketch: By a straightforward reduction of 3SAT, using one automaton per clause
and variable.

Note that one does not even need integer variables in the proof to Proposition 2. The
desired admissible heuristic function h+, based on our abstraction, can not be computed
efficiently. So, in practise, we will have to approximate h+. We introduce two approxi-
mation techniques in the next section, one computing a lower bound, and one computing
an upper bound. Both are implemented as heuristic functions inside UPPAAL.

4 Approximating h+

Our heuristic functions map search states to integers. For each state s during search,
we are facing the following situation. We are given a network of timed automata, target
locations, and a target formula. The start state is s. We want to approximate the length
of an optimal abstract solution.

Both approximations are based on a forward-chaining algorithm that generalises
algorithms proposed in the context of numeric planning [16]. The algorithm is a forward
fixpoint computation. It determines in polynomial time if there is a abstract solution, by
building a data structure called abstract transition graph, short ATG. The ATG is a
layered graph encoding reachability information. Pseudo-code is given in Figure 2.

The ATG is a sequence of location sets Lk(i) and of variable value sets Vk(v): the
graph layers. The algorithm builds these in an incremental way, so that their contents
increase monotonically over k. Satisfaction of a formula, and enabled transitions, are
defined in the obvious manner analogous to abstract states. In each iteration of the
algorithm, for every enabled transition the respective new values are put into the sets.
For the example from Figure 1, if the top automaton has locations t1 (left) and t2 (right),
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k := 0, L0(i) := {s(i)} for all i, V0(v) := {s(v)} for all v
while target locations are not in Lk, or Vk does not model abstract target formula do

Lk+1(i) := Lk(i) for all i, Vk+1(v) := Vk(v) for all v
for all transitions t enabled by Lk and Vk do

Lk+1(i) := Lk+1(i) ∪ {l(i)′} where t goes to l(i)′ in automaton i
if t synchronously also goes to l(j)′ in automaton j then

Lk+1(j) := Lk+1(j) ∪ {l(j)′}
endif
if v := c is an effect of t then Vk+1(v) := Vk+1(v) ∪ {c} endif
if v := v′ is an effect of t then Vk+1(v) := Vk+1(v) ∪ Vk(v′) endif
if v := v + 1 is an effect of t then Vk+1(v) := [min(Vk(v)), ∞] endif
if v := v − 1 is an effect of t then Vk+1(v) := [−∞, max(Vk(v))] endif

endfor
if Lk+1(i) = Lk(i) for all i, and Vk+1(v) = Vk(v) for all v then

minlayer := ∞, stop
endif
k := k + 1

endwhile
minlayer := k

Fig. 2. Building an abstract transition graph (ATG)

and the bottom automaton has locations b1, . . . , bn (from left to right), then L0(top) =
{t1}, L0(bottom) = {b1}, L1(top) = {t1, t2}, and L1(bottom) = {b1}; for 2 ≤ k ≤
n, we get Lk(top) = {t1, t2} and Lk(bottom) = {b1, . . . , bk}. In Ln(bottom) we have
the target location and the algorithm stops.

The treatment of v := v + 1 and v := v − 1 effects is slightly more complicated,
using a sort of “shortcut” to avoid the repeated incremental increasing (decreasing) of
a variable up to (down to) a needed value n (which could take a number of iterations
exponential in the representation of n). Setting a border of a Vk(v) interval to ∞ is
interpreted as telling us that arbitrarily high/low values can now be reached for v, by
applying the respective effect.

It is important to note that the Vk(v) sets can always be represented using only a
number of values polynomial in the size of the input task, i.e. one does not need to
explicitly enumerate all values in the reachable interval. If one of the bounds is infi-
nite, one just records that plus the value at which the continuous region ends. In more
detail, one can represent Vk(v) by an ordered list of possible values, plus a marker at
the lowest and highest value, indicating if or if not below/above the bound there is an
infinite region inside Vk(v). The values in the explicitly stored list can originate from
v := c assignments only, so their number is bounded by the number of such assign-
ments in the input. It should be self-explanatory how this representation corresponds to
the pseudo-code given in Figure 2. The representation of each Lk(i) and Vk(v) is poly-
nomial. Satisfaction of an abstract formula in Lk and Vk can be tested in polynomial
time processing the – at most binary – single conditions in the formula in turn; a condi-
tion on variables v and v′ can be tested by, at most, processing the product of Vk(v) and
Vk(v′). Finally, after a polynomial number of iterations, Lk and Vk will not change any-
more, or reach the respective full sets of locations/values. So altogether the algorithm
terminates in polynomial time. It encodes admissible reachability information.
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Lemma 1. Given a network of timed automata with binary synchronisation and integer
variables, a start state, target locations, and a target formula. If there is an abstract
solution of length n, then the algorithm in Figure 2 stops successfully in an iteration
minlayer ≤ n.

Proof Sketch: When building the ATG without stopping criteria, the abstract solution
t1, . . . , tn is a sub-sequence of the ATG, i.e., tk is enabled by Lk−1 and Vk−1. The
effects of tk are over-approximated and contained in Lk and Vk.

In particular, if the ATG terminates unsuccessfully, then there is no abstract solution.
It is easy to see that, if the targets are reached in layer minlayer, then an abstract
solution can be constructed as the sequence, for k = 0, . . . , minlayer − 1, of all transi-
tions enabled by Lk and Vk. So altogether the ATG is a polynomial procedure deciding
existence of an abstract solution, and Theorem 1 follows.

Extending the ATG to deal with linear arithmetic over the integer variables does not
require a lot of deep thought, but results in rather unreadable algorithm specifications.
As said, testing ∃x̄ : f(x̄) = c is NP-hard for linear expressions f(x̄), but the number of
variables in x̄ is typically small. Our main algorithmic trick to deal with the expressions
efficiently is an incremental computation. If, at some point during building the ATG, we
want to know whether ∃x̄ : f(x̄) = c is true based on the current value subsets (Vk), then
we can refer back to the last time we asked that same question, and just take account of how
the value subsets have changed since then. In fact, we just keep a flag at each expression
occuring in the input, saying if or if not the expression can be satisfied yet. Every
time the value subset of a variable occuring in the expression changes (grows), we see
whether that change serves to satisfy the expression; if so, we set the flag. Checking guard
satisfaction in the ATG then simply means to refer to the flags. Similarly, one can deal with
linear expression effect right hand sides, v := f(x̄). We just enumerate the set of value
tuples for x̄, referring back to the previous version of that set. Typically, just one or two
variables in f(x̄) have gathered new values since the last evaluation of f(x̄). It suffices to
enumerate these changes and extend the old tuple set correspondingly. The only thing that
becomes complicated is the “infinity shortcut” used in Figure 2to encode arbitrarily many
applications of simple increments (and decrements) of the form v := v +1 (v := v−1).
If, for example, the effect is v := v + v′ where Vk−1(v′) = {2, 5}, then the “shortcut”
would have to be Vk+1(v) := Vk(v) ∪ {c + 2a + 5b | c ∈ Vk(v), a, b ∈ N}. Obviously,
this gets quite complicated for general effects v := f(x̄), so we did not implement a
shortcut there and always just insert the new values that can be reached with a single step,
paying the prize of multiple ATG layers for multiple effect applications; usually this is
benign. Note that the incremental approach can be implemented for (almost) arbitrarily
complicated expressions, not only linear ones.

Let us focus again on how to approximate h+. As said, we compute a lower bound
as well as an upper bound. We call the lower bound hL, and the upper bound hU . By
Proposition 1, a lower bound on h+ is the minlayer value determined by the ATG
algorithm. We set hL(s) to that value as computed by the ATG for s. Regarding an
upper bound, note that, with the above, the number of all transitions enabled at layers
k = 0, . . . , minlayer − 1 provides such a bound. However, this bound is likely to be
far too generous, counting transitions that are reachable but not needed to achieve the
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an!

a(n−1)?a(n−1)?

a(n−1)?

an? an?

an?

a2!

a1?a1?

a1?

a2! an!

a1!

Fig. 3. A simple example where hL and hU deliver the precise error state distance

targets. We therefore use a more involved method to determine our upper bound hU . The
method basically selects, at each layer k = 0, . . . , minlayer−1, a subset of the enabled
transitions, so that the sequence of the selected transitions is still an abstract solution.
This is done by a backward-chaining procedure on the ATG. For space reasons, and
since the details are not overly important here, we don’t describe the procedure in detail
and refer to the TR [13]. The selected abstract solution is not necessarily optimal, and
we set hU to its length. Both hU and hL have the value ∞ in case there is no abstract
solution (implying with Proposition 1 that there is no real solution either).

Figure 3 gives another example. In the start state, all automata are in the bottom
location. The error state is to reach the top left locations. In each automaton except the
first one, one has two choices, one of which leads into a dead end (a state from which the
error can not be reached), since the required communication signal won’t be available
anymore. Built for the start state, each layer k of the ATG corresponds exactly to the
locations that can be reached within k steps – in particular, the top left location in the
kth automaton from the left. So minlayer = n, and hL = hU = n is the precise error
state distance. If, during search, a wrong decision was made in automaton i, then the
top left location in i does not appear in the ATG, and the heuristic value is ∞. So all
dead ends are excluded from the search space. In contrast, dL = 2 and dU = 2n − 1
for the start state, and no dead ends are detected. Another example where hL and hU

are precise is, e.g., a situation that requires (only) to repeatedly increment an integer
variable. Intuitively, hL and hU are good at detecting long sequences of transitions that
build upon each other to achieve some target, and at finding out that such a sequence
is not available. What they are not good at is to see that the same thing has to be done
multiple times4 – under the monotonicity abstraction, everything needs to be done at
most once. A bad situation was given earlier in Figure 1, where the top automaton needs
to go through repeated circles, while hL and hU act as if a single circle is sufficient.

5 Results

We ran experiments on an Intel Xeon 3.06 Ghz system with 4 GByte of RAM. As
said, our configurations finding optimal error paths are UPPAAL’s standard BF, and
A∗ search with hL or dL. Our sub-optimal configurations are UPPAAL’s standard ran-
domised DF, short rDF (which is by far the most efficient standard method across many
examples, including ours), and greedy search with any of hL, hU , dL, and dU .

4 When repeatedly incrementing a variable, every increment has a different effect.
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Table 1. Experimental results for the sub-optimal configurations rDF, greedy search with hL, and
greedy search with hU . Abbreviations: a number of automata, c number of clocks, v number of
variables, t runtime in seconds, S search space size (number of visited states, “e+x” means ·10x),
M peak memory used in MByte (“G” GByte), l length of detected error path (“K” thousand).
Dashes indicate out of memory.

t S M l
Exp a c v rDF hL hU rDF hL hU rDF hL hU rDF hL hU

FA
5 5 5 1 0.0 0.0 0.0 526 27 34 3 1 1 161 9 9

FA
10 10 10 1 0.4 0.0 0.0 6371 42 54 7 1 1 1096 9 9

FA
15 15 15 1 1.3 0.0 0.0 20010 57 74 10 1 1 2356 9 9

FB
5 5 5 1 0.0 0.0 0.0 356 612 74 2 1 1 114 13 18

FB
10 10 10 1 0.5 0.8 0.0 7885 55866 274 7 11 1 1363 29 33

FB
15 15 15 1 3.8 40.3 0.0 58793 1.5e+6 599 18 75 1 6956 367 48

FC
5 5 5 2 0.0 0.0 0.0 63 22 23 1 1 1 23 7 7

FC
10 10 10 2 0.0 0.0 0.0 205 37 38 1 1 1 37 7 7

FC
15 15 15 2 0.0 0.0 0.0 692 52 53 1 1 1 83 7 7

M1 3 4 11 0.8 0.1 0.2 29607 5656 14679 7 1 9 1072 169 120
M2 4 4 13 3.1 0.3 0.8 118341 30742 67398 10 11 11 3875 431 142
M3 4 4 13 2.8 0.2 0.8 102883 18431 75976 9 10 11 3727 231 158
M4 5 4 15 12.7 0.8 2.5 543238 76785 230466 22 13 16 15K 731 185
N1 3 7 11 1.9 0.5 0.8 41218 16335 25577 7 10 10 1116 396 157
N2 4 7 13 9.3 2.4 3.8 199631 88537 134444 13 13 13 4775 990 241
N3 4 7 13 8.4 0.6 4.0 195886 28889 143969 12 11 13 3938 324 228
N4 5 7 15 40.9 5.1 19.2 878706 240366 758167 39 20 31 18K 1671 282

C1 5 3 12 0.8 0.2 0.2 25219 2339 3021 7 9 10 1056 95 87
C2 6 3 14 1.0 0.3 0.5 65388 5090 7484 8 10 10 875 86 100
C3 6 3 15 1.1 0.5 0.6 85940 6681 8259 10 10 10 760 109 101
C4 7 3 17 8.4 2.5 3.8 892327 40147 65781 43 11 13 1644 125 140
C5 8 3 19 72.4 13.2 16.7 8.0e+6 237600 333692 295 21 23 2425 393 218
C6 9 3 21 – 10.1 94.7 – 207845 8.7e+6 – 20 223 – 309 1000
C7 10 3 23 – 169 836 – 2.7e+7 9.2e+7 – 595 2.1G – 1506 4630
C8 10 3 24 – 14.5 932 – 331733 9.8e+7 – 23 2.3G – 686 16K
C9 10 3 25 – 1198 – – 1.3e+8 – – 2.5G – – 18K –

In the sub-optimal configurations, we use a bitstate hashing technique. This is a ta-
ble with N entries, containing heuristic values, indexed by hash values of search states.
Initially all table entries are empty. If the table entry for a new search state already con-
tains a value, then that value is returned. Otherwise, the heuristic value is computed and
stored in the table. This is a greedy method to bound the number of calls of the heuristic
computation. After some limited experimentation, we set N to 256,000 in the reported
experiments.5

5 For very small values of N , around 10,000, we observed many “outliers”, i.e., examples where
search took several orders of magnitude shorter or longer when using the bitstate hashing. For
larger N values, the behaviour becomes more stable, and most of the time gives a speedup
factor of around 2 to 10 in our examples.
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Table 2. Experimental results for greedy search with dL and dU . Abbreviations as in Table 1.

t S M l
Exp a c v dL dU dL dU dL dU dL dU

FA
5 5 5 1 0.0 0.0 80 80 1 1 21 21

FA
10 10 10 1 0.0 0.0 130 130 1 1 21 21

FA
15 15 15 1 0.0 0.0 180 180 1 1 21 21

FB
5 5 5 1 0.0 0.0 1300 23 1 1 58 7

FB
10 10 10 1 24.7 0.0 1.5e+6 38 81 1 42K 7

FB
15 15 15 1 37.2 0.0 1.5e+6 53 277 1 112K 7

M1 3 4 11 0.4 0.5 31927 39288 10 10 1349 1695
M2 4 4 13 2.8 40.0 203051 3.4e+6 17 150 7695 183K
M3 4 4 13 2.2 1.5 174655 130580 14 14 5690 5412
M4 5 4 15 6.8 65.7 579494 6.0e+6 33 445 25K 668K
N1 3 7 11 1.6 1.3 42931 36858 10 10 1803 1601
N2 4 7 13 9.1 124 264930 5.1e+6 20 289 9279 366K
N3 4 7 13 4.8 77.4 134798 2.6e+6 19 218 11K 127K
N4 5 7 15 49.4 181 1.5e+6 6.7e+6 74 234 41K 127K

C1 5 3 12 0.2 0.2 19263 19628 10 10 977 987
C2 6 3 14 0.5 0.4 68070 60618 12 12 1501 830
C3 6 3 15 0.7 0.6 97733 86474 14 14 1238 856
C4 7 3 17 6.3 5.6 979581 854090 47 45 4510 1906
C5 8 3 19 61.7 58.6 8.8e+6 8.3e+6 306 306 12K 8943
C6 9 3 21 – – – – – – – –

The tool executable and our benchmark examples are available for download from
http://www.informatik.uni-freiburg.de/˜kupfersc/spin/. The data for
the sub-optimal configurations are in Table 1 (rDF, hL, and hU ) and Table 2 (dL and
dU ). The data for the optimal configurations are in Table 3. Below, we first explain the
examples used, then we discuss the results.

We use three variants of the Fischer protocol for mutual exclusion. The examples
are “FX

i ” in the tables, where X is A, B, or C, and i is the number of parallel automata.
The error condition is that at least two of the automata are in a certain location simul-
taneously. We made the error possible by weakening one of the temporal conditions in
the automata (from “>” to “≥”). The variants differ in the way they encode the error
condition. Variant A adds additional automata with synchronisation. Variant B selects
and specifies two of the automata for the error condition. Variant C introduces a variable
specifying the number of automata in the error location.

The other examples in the tables are from two more realistic case studies. Examples
“Mi” and “Ni”, i = 1, . . . , 4, come from a study called “Mutual Exclusion”. This
study models a real-time protocol to ensure mutual exclusion of states in a distributed
system via asynchronous communication. The protocol is described in full detail in
[17]. By increasing an upper time bound in the model we got a flawed specification
that we transformed into its timed automata semantics by applying various abstractions
techniques. The resulting models do not have many automata but a non-trivial amount
of clocks and variables.
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Table 3. Experimental results for our optimal configurations, i.e., BF, A∗ search with hL, and A∗

search with dL. Abbreviations as in Table 1, na means not applicable.

t S M l
Exp a c v BF hL dL BF hL dL BF hL dL

FA
5 5 5 1 0.0 0.0 0.0 1467 207 1457 6 1 1 9

FA
10 10 10 1 0.5 0.0 0.6 37942 2022 37922 8 1 8 9

FA
15 15 15 1 7.8 0.3 7.8 348827 9187 348797 31 10 32 9

FB
5 5 5 1 0.0 0.0 0.0 362 138 242 1 1 1 7

FB
10 10 10 1 0.0 0.0 0.0 5422 1768 2352 1 1 1 7

FB
15 15 15 1 0.6 0.2 0.2 34307 8648 10437 7 11 6 7

FC
5 5 5 2 0.0 0.0 na 362 130 na 1 1 na 7

FC
10 10 10 2 0.0 0.0 na 5442 755 na 1 1 na 7

FC
15 15 15 2 0.6 0.0 na 34307 2255 na 7 1 na 7

M1 3 4 11 0.8 0.3 0.8 50001 24035 50147 7 7 7 50
M2 4 4 13 3.1 1.4 3.4 223662 101253 223034 11 10 10 51
M3 4 4 13 3.3 1.6 3.4 234587 115008 231357 11 10 10 53
M4 5 4 15 13.6 6.4 14.5 990513 468127 971736 29 22 25 54
N1 3 7 11 5.2 3.2 5.6 100183 59573 99840 9 9 8 50
N2 4 7 13 25.6 15.1 25.5 442556 273235 446465 18 15 15 53
N3 4 7 13 26.4 16.7 27.2 476622 301963 473117 17 15 15 53
N4 5 7 15 120 77.4 119 2.0e+6 1.3e+6 2.0e+6 65 39 45 56

C1 5 3 12 0.3 0.7 0.3 35325 17570 35768 7 9 7 55
C2 6 3 14 0.9 1.7 1.0 109583 46495 110593 10 12 10 55
C3 6 3 15 1.2 2.1 1.3 143013 53081 144199 11 13 11 55
C4 7 3 17 10.8 16.9 12.2 1.4e+6 451755 1.4e+6 78 49 51 56
C5 8 3 19 114 128 123 1.2e+7 3.4e+6 1.2e+7 574 322 377 57
C6 9 3 21 – 1328 – – 3.2e+7 – – 2.7G – 57

Examples “Ci”, i = 1, . . . , 9, come from a case study called “Single-tracked Line
Segment”. This study stems from an industrial project partner of the UniForM-project
[18] and the problem is to design a distributed real-time controller for a segment of
tracks where trams share a piece of track. A distributed controller was modeled in
terms of PLC-Automata [17, 18], an automata-like notation for real-time programs. The
PLC-Automata were translated into timed automata with the tool Moby/RT [19]. The
property to be checked requires that never both directions are given permission to enter
the shared segment simultaneously. This property is ensured by 3 PLC-Automata of the
whole controller. We injected an error by manipulating a delay such that the asynchro-
nous communication between these automata is faulty. In Moby/RT abstractions are
offered for the translation into the timed automata. The given set of PLC-Automata had
eight input variables and we constructed nine models with decreasing size by abstract-
ing more and more of these inputs.

The results in Tables 1 and 2 clearly demonstrate the potential of our heuristic func-
tions. Consider Table 1 first. Except in FB

i (where hL behaves very badly), and FC
i

(where no approach needs any time), the heuristic searches consistently find the error
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paths much faster. Due to the reduced search space size and memory requirements, they
can solve more of the large Ci examples. At the same time, they find much, by orders
of magnitude, shorter error paths in all cases. In FB

i , hL does worse than hU because
its heuristic value does not improve if only one of the two target automata moves closer
to its destination: the ATG becomes shorter only if both get closer. The somewhat odd
behaviour of hL in C8, where search is a lot faster than in C9, is an outlier caused by
the bitstate hashing (outliers suggest a direction for future work discussed in Section 7).

Considering Table 2, we observe that, using dL and dU in greedy search, except
in the Fischer variants the search space sizes and runtimes one gets are similar to that
of rDF, in most cases somewhat worse. The error paths are longer (up to two orders
of magnitude) than those found by rDF, except in Fischer variant A. The heuristics
can’t handle Fischer variant C – the target condition is not expressed in terms of target
locations – which is, for that reason, left out of the table. In variant B, similarly to hL,
dL fails quickly. In variant A, due to the construction both dL and dU are constantly 1,
and the search spaces are identical to those of a non-randomised DF.

The results for the optimal configurations, Table 3, demonstrate that hL also has
some potential to improve the finding of optimal error paths, if to a lesser extent than
in the sub-optimal setting. A∗ with hL has the smallest search spaces in all cases, and
the best runtimes in all cases except the large Ci examples, of which it can solve more
than the other configurations due to the lower memory requirements. The dL heuristic,
on the other hand, most of the time yields performance very similar to that of BF. None
of the configurations could solve C7, C8, or C9.

6 Related Work

The published approaches to directed model-checking all differ from ours either in that
the heuristic has to be provided by the user, or in that the heuristic is based on a very
different kind of reasoning.

Bloem et al [20] describe a mechanism how to model check ECTL and ACTL for-
mulas. The method computes least and greatest fixpoints by under and over approx-
imations based on hints provided by the user. Apart from relying on the user, this
method differs from ours in that it can treat more general formulas, and does not do
a heuristic search. Behrmann et al [12] have studied priced timed automata. Transitions
are labelled with prices, and a heuristic estimates the remaining costs. Behrmann et al
achieved good results in an application for which they hand-coded the heuristic; they
don’t provide an automatic computation.

Yang and Dill [21] use Hamming distance to drive a heuristic search. This is gen-
erally a much cruder approximation than our ATG-based heuristics (with the advantage
of taking much less time to compute). We implemented the Hamming distance heuristic
in UPPAAL, and found it to not work well in our examples: roughly similar to dL and
dU in the Fischer examples, by far the worst heuristic (much worse runtime results) in
the Mi, Ni, and Ci examples. Groce and Visser [6] introduce two heuristics, inspired
by the area of testing, for model checking Java programs. The heuristics do not try to
target an error formula but instead drive the search to cover yet unexplored branches in
the program. Edelkamp et al [4] introduced heuristics to improve error detection with
SPIN. As discussed earlier, we implemented these heuristics (dL and dU ) in UPPAAL
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and found them to not work very well in our context. Qian and Nymeyer [7] introduced
the use of “pattern database” heuristics based on abstractions generated by ignoring
some of the state variables. This is a very different abstraction technique than ours,
which keeps all variables, and, instead, simplifies their semantics.

In parallel to ours, related work is done by Dräger et al [5]. A paper is submitted to
this same conference. The two pieces of work are conducted (and submitted) separately
because, like in the works listed above, the techniques used to generate the heuristic
functions are fundamentally different. While we approach from an AI Planning per-
spective, Dräger et al modify established abstraction methods from Verification. While
we developed combined treatments of communication and integer variables, their focus
so far is (almost) exclusively on finding good approximations of communication, par-
ticularly of cyclic patterns. Treating integer variables in Dräger et al’s approach appears
non-trivial, and has not yet been done. Their approximation works by, in a pre-process,
iteratively “merging” a pair of automata, i.e., by computing their product and then merg-
ing locations until there are at most N locations left, where N is an input parameter.
The resulting heuristic has, in difference to ours, no trouble with the communication
structure depicted in Figure 1 (Section 4) – however, when merging locations one runs
the risk to lose the distinction between dead ends and non dead ends in Figure 3. Indeed,
in that example, UPPAAL excels with our heuristics but doesn’t scale with Dräger et
al’s; in Towers of Hanoi – an example containing excessively many repetitions in its
solution – the picture is exactly inverse. As more realistic examples, we shared the Mi,
Ni, and Ci benchmarks. While these have communication structures more like Figure
1, they also rely heavily on integer variables. The results for the two different heuristics
are roughly comparable. There are advantages for hL in the Mi and Ni benchmarks,
and advantages for Dräger et al’s heuristic in the Ci benchmarks except C6, C7, and
C8. Investigating combinations of the two approaches – e.g., using our approach to
treat integers in Dräger et al’s approach – is future work.

7 Conclusion

We have introduced methods for automatically generating two heuristic guidance func-
tions in UPPAAL. We have shown the functions’ potential for yielding more reliable
finding of error states, by reducing the number of search states that need to be consid-
ered, as well as guiding the search to short error paths.

The most pressing research topic right now is how to take clock variables into ac-
count in the heuristic computation. As said, a straightforward treatment is very unlikely
to yield any useful information. We think there is hope in, when building the ATG,
distinguishing between the clock value subsets that can be reached at the individual
automaton locations. Due to location invariants restricting the passage of time, the in-
tervals possible at individual locations are more restricted than the “global” reachable
interval. Particularly, constraints on how one clock value can change due to a transition
often transfer to all other clocks as well since for them time elapses in the same way. (As
a simple example, if one steps from l to l′ and x ≤ 5 is an invariant for l′, then we know
that the maximum reachable value for any clock is at most 5 larger than it was in l.) In
a similar fashion, we hope to make the treatment of integer variables more informed by
distinguishing between the value subsets that can be reached at individual locations.



Adapting an AI Planning Heuristic for Directed Model Checking 51

In the long term, we want to explore the following two directions. First, the “out-
liers” – instances solved in extremely short time – observed with very small hash tables
in bitstate hashing suggest that randomised local search with restarts might be suitable.
Such methods do gradient descents on the search space surface, with random perturba-
tions, until either a solution is reached or a termination criterion (e.g. path length bound
exceeded) holds, and a restart is made. We take the existence of outliers to indicate
that there is a good enough chance for such gradient descents to find shallow solutions.
Second, we believe there is hope in generating heuristic functions based on predicate
abstractions: these could take the clocks into account very naturally.
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Abstract. Many different automata and algorithms have been inves-
tigated in the context of automata-theoretic LTL model checking. This
article compares the behaviour of two variations on the widely used Büchi
automaton, namely (i) a Büchi automaton where states are labelled with
atomic propositions and transitions are unlabelled, and (ii) a form of test-
ing automaton that can only observe changes in state propositions and
makes use of special livelock acceptance states. We describe how these
variations can be generated from standard Büchi automata, and outline
an SCC-based algorithm for verification with testing automata.

The variations are compared to standard automata in experiments
with both random and human-generated Kripke structures and LTL X

formulas, using SCC-based algorithms as well as a recent, improved ver-
sion of the classic nested search algorithm. The results show that SCC-
based algorithms outperform their nested search counterpart, but that
the biggest improvements come from using the variant automata.

Much work has been done on the generation of small automata, but
small automata do not necessarily lead to small products when combined
with the system being verified. We investigate the underlying factors for
the superior performance of the new variations.

1 Introduction

The automata-theoretic approach to model checking is based on the correspon-
dence between temporal logic, automata and formal languages. Checking that a
system S complies with a temporal logic correctness formula entails the appli-
cation of two algorithms: the first to translate a formula φ to an ω-automaton
(on infinite words), and the second to determine whether the intersection of this
automaton and a similar automaton derived directly from S accepts only the
empty language. It comes as no surprise that since this approach was first pro-
posed, the use of many different kinds of automata has been investigated, and
several variations on the two algorithms have been proposed; some of this work
is mentioned in Section 2.
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It is probably accurate to say that most of the research in this field is based
on Büchi automata with propositional formulas on transitions. We shall refer to
this standard form as transition-labelled. In this work we study two variations
on this theme. First, in Section 3, we consider Büchi automata where the states
carry propositional formulas and the transitions are unlabelled — we shall refer
to these as state-labelled Büchi automata. The second form, the so-called testing
automaton described in Section 4, is a modification that accommodates stutter-
ing in a more natural way. In addition to the standard acceptance states, testing
automata also feature livelock accepting states.

The work on testing automata is based on the results of [21]. There the
authors defined another, slightly more complicated form of testing automaton
and showed that they are more often deteministic than state-labelled Büchi
automata. We extend this work in two important ways: we show how to construct
our form of testing automata and provide an SCC-based algorithm for on-the-fly
verification with them.

In Section 5, we compare the amount work required for on-the-fly verifi-
cation using two different algorithms for transition- and state-labelled Büchi
automata and our new algorithm for testing automata. It turns out that, in our
experiments, the new variations were considerably more efficient in terms of the
number of states and transitions they explore. An important part of the contri-
bution of this paper comes in Section 6, where we discuss exactly how and when
the differences in performance occur and attempt to explain why this is so. Our
conclusions are presented in Section 7.

2 Background and Related Work

The connection between temporal logic and formal languages has been a topic
of research since the 1960’s [3, 23, 26]; a short but excellent overview of the
development of this work and its relation to model checking is [25, Section 1.3].
The potential benefits of an automata-theoretic approach to model checking was
first pointed out by Wolper in [35], and Wolper, Vardi, and Sistla in [36].

Our definitions of Kripke structures and Büchi automata are standard but,
for the sake of later work, we state them explicitly. From here on we use P to
denote a finite set of atomic propositions.

A Kripke structure [24] over P is a tuple M = (S, I, L, R) where S is a finite
set of states, I ⊆ S is the set of initial states, L : S → 2P is a labelling function
that maps each state s to the set of atomic propositions that are true in s, and
R ⊆ S × S is the transition relation. We assume that R is total. An execution
path or run of M is an infinite sequence of states r = s1s2s3 . . . ∈ Sω such that
s1 ∈ I and (si, si+1) ∈ R for all i ≥ 1.

A Büchi automaton [4] over an alphabet K is a tuple A = (S, I, R, F ) where
S is a finite set of states, I ⊆ S is the set of initial states, R ⊆ S × 2K × S is
the transition relation, and F ⊆ S is a set of acceptance states. Because sets of
symbols of the alphabet appear on the transitions, we shall refer to this form as
a transition-labelled Büchi automaton (TLBA).
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Each word accepted by A is an infinite sequence of symbols from K. A run
of the automaton over a word w = k1k2 . . . ∈ Kω is an infinite sequence of states
r = s1s2 . . . ∈ Sω such that s1 ∈ I and for all i ≥ 1 there exists a Ki ⊆ K such
that ki ∈ Ki and (si, Ki, si+1) ∈ R . The set of states that occur infinitely often
in run r is denoted by inf (r) (and clearly inf (r) ⊆ S), and the run is accepting
if and only if inf (r) ∩ F �= ∅.

When Büchi automata are used for verification we shall use K = 2P . This is
interpreted in such a way that if f is a propositional logic formula over P , and
P = {P1, . . . , Pn} ⊆ 2P is the set of all models of f (in other words, Pi ∈ P
if and only if Pi |= f), then we use (s, f, s′) and (s, P, s′) interchangeably as
members of R.

2.1 Construction of Büchi Automata

An early algorithm for converting LTL formulas to Büchi automata was de-
scribed by Vardi and Wolper in [34], but unfortunately it always produced au-
tomata with 2O(n) states, where n is the number of subformulas of the LTL
formula. A more practical algorithm is [18], on which many later improvements
are based. The basic idea is a two-step approach that first translates the input
formula to a generalized Büchi automaton, which is then turned into a (standard)
Büchi automaton using the flag construction due to Choueka [5].

A general class of improvements is based on rewriting rules to simplify the
LTL formula before any automaton is constructed, and several ad hoc heuris-
tics have been proposed to simplify the final automaton. Several groups have
proposed improvements based on different procedures for computing covering
sets [9, 28], while others have concentrated on reducing the final automaton us-
ing simulations [12, 13, 14, 20, 29].

Gastin and Oddoux have investigated the use of very weak alternating au-
tomata as an intermediate form to improve both the size of the final Büchi
automata and the speed of their generation [16]; this approach is not especially
relevant to our work, but we shall make use of their tool for our experiments.

2.2 Verification with Büchi Automata

A Kripke structure M satisfies a specification φ if all its executions are allowed
by the specification. This is equivalent to checking that none of M ’s executions
satisfy ¬φ. The automata-theoretic approach therefore consists of constructing
a Büchi automaton A¬φ, computing its product with M , and checking that it is
empty, in other words, checking that no execution of M violates φ. Although it
is possible to first express M itself as a Büchi automaton, the product of M and
A¬φ can be defined more directly as follows.

Let F = {propositional formulas over P}, and let M = (SM , IM , LM , RM )
be a Kripke structure over P , and A¬φ = (SA, IA, RA, FA) a TLBA over 2P .
Then the product of M and A¬φ, denoted M ‖ A¬φ, is a triple (S, R, I), where
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Fig. 1. Examples of automata and products for verifying φ = ��¬p
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– S = SM × SA is the set of states,
– R ⊆ S × S is the transition relation where ((s, a), (s′, a′)) ∈ R if and only if

(s, s′) ∈ RM ∧ ∃f ∈ F : (a, f, a′) ∈ RA ∧ LM (s) |= f, and
– I ⊆ IM × IA is the set of initial states.

A run of the product is an infinite sequence of states (s1, a1)(s2, a2) . . . such
that (s1, a1) ∈ I and ((si, ai), (si+1, ai+1)) ∈ R for all i ≥ 1. A counterexample
for φ in the product is a run such that a1a2 . . . is an accepting run of A¬φ.

An example of a Kripke structure, Büchi automaton, and their product is
shown in Figure 1. Each state of the Kripke structure (at the top of the figure) is
numbered and labelled with the set of atomic propositions that hold in the state.
In this example, P = {p}. The initial state is indicated by the sourceless arrow
that points to the top left state. The accepting state of the Büchi automaton,
shown in (a), is indicated by a double circle. The states of the product are
labeled with (Kripke state,Büchi state) pairs and those state where the Büchi
automaton is in an accepting state is similarly indicated by a double circle.

Arguably the most popular on-the-fly algorithm for computing the product
automaton and detecting accepting cycles is a nested depth-first search algo-
rithm first proposed by Courcoubetis, Vardi, Wolper and Yannakasis in 1990 [6].
Subsequent improvements [15, 19, 22, 27] has not only made it compatible with
partial-order methods, but has also led to a significant reduction in the number
of states and transitions it needs to explore. The core algorithm has also been
adapted for use with generalized Büchi automata [32] and heuristic search [2, 11].
Recent work has looked again at the use of strongly connected component (SCC)
algorithms for both standard and generalized Büchi automata [7, 8, 17, 27]; the
algorithm we describe in Section 4.2 is based on one such.

3 State-Labelled Büchi Automata

A state-labelled Büchi automaton (SLBA) over an alphabet K is a tuple B =
(S, I, U, R, F ) where S is a finite set of states, I ⊆ S is the set of initial states,
U : S → K maps each state to a symbol of the alphabet, R ⊆ S × S is the
transition relation, and F ⊆ S is a set of acceptance states.

A run of the automaton over a word w = k1k2 . . . ∈ Kω is an infinite sequence
of states r = s1s2 . . . ∈ Sω such that s1 ∈ I and (si, si+1) ∈ R and U(si) = ki

for all i ≥ 1. As for TLBAs, a run r is accepting if and only if inf (r) ∩ F �= ∅.

3.1 Construction of State-Labelled Büchi Automata

The conversion from a TLBA to an SLBA is straightforward. Given a TLBA
A = (SA, IA, RA, FA) over K, the equivalent SLBA is B = (SB , IB, UB, RB, FB)
where

– SB = SA × K, IB = IA × K, FB = FA × K,
– UB maps each state to its second component, so that UB((s, k)) = k, and
– RB is such that ((s1, k1), (s2, k2)) ∈ RB if and only if (s1, k, s2) ∈ RA for

some k ∈ 2K , and k2 ∈ k, and k1 is any element of K.
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Some states of B may not be reachable from an initial state and can be
eliminated. Isomorphic copies of subautomata of B can also be removed using
an algorithm such as partition refinement. Other, more intricate optimizations
are also possible but we do not focus on them here.

3.2 Verification with State-Labelled Büchi Automata

Let M = (SM , IM , LM , RM ) be a Kripke structure over P , and let B¬φ =
(SB, IB , UB, RB , FB) be an SLBA over K = 2P . Then the product of M and
B¬φ, denoted M ‖ B¬φ, is a triple (S, R, I), where

– S = SM × SB is the set of states,
– R ⊆ S × S is the transition relation where ((s, b), (s′, b′)) ∈ R if and only if

(s, s′) ∈ RM ∧ (b, b′) ∈ RB ∧ LM (s′) = UB(b′), and
– I ⊆ IM × IB are initial states where (s, b) ∈ I if and only if LM (s) = UB(b).

A run of the product is an infinite sequence of states (s1, b1)(s2, b2) . . . such
that (s1, b1) ∈ I and ((si, bi), (si+1, bi+1)) ∈ R for each i ≥ 1. A counterexample
for φ in the product is a run such that b1b2 . . . is an accepting run of B¬φ. Exactly
the same algorithms used for TLBAs can be used for SLBAs.

We refer once again to Figure 1 for examples of an SLBA and its product
with a Kripke structure. The notation should be clear; it corresponds to what
was discussed before for the TLBA. It may seem that the difference between
a TLBA and the equivalent SLBA is merely a matter of notation that carries
no benefit. However, the product shown in (b) is already an early indication
that this is not so: M ‖ B¬φ has two states and two transitions fewer than
M ‖ A¬φ.

4 Testing Automata

A testing automaton (TA) over an alphabet K is a tuple C = (S, I, U, R, F, G)
where S is a finite set of states, I ⊆ S is the set of initial states, U : I → K maps
each initial state to a symbol of the alphabet, R ⊆ S × K × S is the transition
relation, F ⊆ S is a set of Büchi acceptance states, and G ⊆ S is a set of livelock
acceptance states.

A run of the testing automaton C over a word w = k1k2 . . . ∈ Kω is only
defined when K = 2P . In such a case, it is an infinite sequence of states r =
s1s2 . . . ∈ Sω such that s1 ∈ I and U(s1) = k1, and for all i ≥ 1 either

1. ki �= ki+1 and (si, ki ⊕ ki+1, si+1) ∈ R, or
2. ki = ki+1 and si = si+1.

Here ⊕ denotes the symmetric difference operator on sets. A run r over a word
w = k1k2 . . . is accepting if and only if either

1. inf (r) ∩ F �= ∅ and |inf (w)| > 1, or
2. ∃n : (sn ∈ G) ∧ (∀i > n : si = sn ∧ ki = kn).
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This general formulation of testing automata allows transitions of the form
(s, ∅, s′), but since they do not add any expressive power to an automaton and are
undesirable in the context of verification, we restrict our attention to automata
without such transitions. However, we do not forbid them, as they are useful for
the conversion algorithm outlined in the next section.

Informally speaking, a TA is an SLBA that, whenever the Kripke structure
executes a stuttering transition, executes a null transition (stays in the same
state). Its transitions are not labelled with propositions or formulas, but with
“change sets”, so that it only observes changes in atomic propositions. In addition
to Büchi acceptance states, TAs also have livelock acceptance states. A run is
accepted if and only if
1. it visits at least one Büchi acceptance state infinitely often and includes an

infinite number of non-stuttering transitions (the |inf (w)| > 1 condition), or
2. it reaches a livelock acceptance state and from that point on contains only

stuttering transitions.

4.1 Construction of Testing Automata

The conversion from SLBA to TA is a two-step process. Given an SLBA B =
(SB, IB , UB, RB , FB) over alphabet K, we first construct an intermediate TA
C = (SC , IC , UC , RC , FC , GC) such that

– SC = SB, IC = IB , FC = FB, and GC = ∅,
– UC(s) = UB(s) for all s ∈ IC , and
– (s1, k, s2) ∈ RC if and only if (s1, s2) ∈ RB and k = UB(s1) ⊕ UB(s2).

In the second step, C is converted to its final form by computing the maximal
strongly stuttering-connected components, where stuttering-connected means
that every state of the component can reach every other state via a sequence of
zero or more transitions of the form (s, ∅, s′). Those components that are non-
trivial (in other words, consists of at least two states or a single state with a
self-loop) and contain at least one Büchi accepting state, are added state-by-state
to the livelock acceptance states GC . Then, every stuttering transition (s, ∅, s′)
is removed. If s′ is a member of IC or GC , we add s to the same set (and define
UC(s) = UC(s′) when s′ ∈ IC). Finally we remove all unreachable states and
transitions from the automaton.

Note that this construction can be carried out with any Büchi automaton, but
it is only meaningful if the original property is expressible without the use of the
next-state operator. It is not required, however, that the Büchi automaton itself
exhibits no stuttering [21], only that the property is insensitive to stuttering.
This ensures that the language accepted by the automaton remains the same.

As in the case of SLBAs, various further optimizations are possible, but
we do not want to discuss them here. However, it is important to note one
technical aspect that also applies to TLBAs and SLBAs, but which is especially
important for TAs. The set of atomic propositions P may contain propositions
that are never referenced by the automaton in question. For the purposes of
efficient verification, such propositions should be removed from P ; they cannot
influence the outcome of the verification and may lead to unnecessary work.
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4.2 Verification with Testing Automata

Let M = (SM , IM , LM , RM ) be a Kripke structure over P , and let C¬φ =
(SC , IC , UC , RC , FC , GC) be a TA over 2P . Then the product of M and C¬φ,
denoted M ‖ C¬φ, is a triple (S, R, I), where

– S = SM × SC is the set of states,
– R ⊆ S × S is the transition relation where ((s, c), (s′, c′)) ∈ R if and only if

either
1. (s, s′) ∈ RM ∧ (c, LM (s) ⊕ LM (s′), c′) ∈ RA, or
2. (s, s′) ∈ RM ∧ c = c′ ∧ LM (s) = LM (s′), and

– I ⊆ IM × IC are initial states where (s, c) ∈ I if and only if LM (s) = UC(c).

A run of the product is an infinite sequence of states (s1, c1)(s2, c2) . . . such
that (s1, c1) ∈ I and ((si, ci), (si+1, ci+1)) ∈ R for each i ≥ 1. A counterexample
for φ in the product is a run such that c1c2 . . . is an accepting run of C¬φ.

As before, an example of a TA and its product with a Kripke structure can
be found in Figure 1. Those states in part (c) of the picture where the TA (or
the TA component of the product) is in a livelock accepting state have been
marked with a dotted circle; in this particular example, the TA has no Büchi
acceptance states, so that FC = ∅ and GC = {0}. The UC labels are shown on
the left of the TA at the source of the arrows to the initial states.

The same algorithms that are used for verification with TLBAs and SLBAs
can be used with a TA to detect those violations that involve Büchi acceptance
states. Also, in [21, 33] the authors propose a one-pass algorithm to detect vi-
olations involving the livelock acceptance states of the TA. Unfortunately, it is
not possible to merge these into a single one-pass algorithm: while the first usu-
ally relies on a depth-first exploration of the product automaton, the key to the
second algorithm is that transitions are explored in a specific, non-depth-first
order. One solution is of course to first run the one algorithm, and then the
other, but this is wasteful since any information that the first algorithm could
conceivably gather is lost when it terminates. Moreover, a single one-pass algo-
rithm has distinct advantages. For software model checking it is often expensive
to generate transitions (which may involve steps such as garbage collection or
heap canonization). Furthermore, if each state is visited only once, partial or-
der reduction is simplified and there is no need to “remember” reductions made
during a previous visit.

We now describe a new one-pass algorithm which is based on the LTL model
checking algorithm in [17] (which, in turn, is based on Tarjan’s algorithm for
SCC detection [30]). The new algorithm detects both Büchi and livelock viola-
tions. While the algorithm works entirely reliably for Büchi violations, it does, in
certain cases, fail to report an existent livelock violation. However, these circum-
stances are exceptional; for example, during the random experiments we present
in the next section, this happened in only 2 out of 93560 (= 0.00214%) cases.

First, we review the Tarjan-based algorithm in [17], a recursive version of
which called tarjan is shown in Figure 2. The algorithm explores the product
of a Kripke structure and a TLBA A (or SLBA B) and therefore does not take
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0 for each i ∈ I do if colour [i] = white then tarjan(i)

tarjan(s)
1 colour [s] ← grey
2 dfnr [s] ← low [s] ← n ; inc(n)
3 S.push(s)
4 if accept [s] then A.push(s)
5 for each successor t of s do
6 c ← colour [t]
7 if c = white then tarjan(s)
8 if c �= black then update(s, t)
9 if A.top = s then x ← A.pop
10 if low [s] = dfnr [s] then scc(s)

update(s, t)
11 low [s] ← min(low [s], low [t])
12 if low [s] ≤ dfnr [A.top] then
13 report violation

scc(s)
14 repeat
15 x ← S.pop
16 colour [x] ← black
17 until x = s

Fig. 2. The Tarjan-based algorithm presented in [17]

stuttering transitions into account. For every product state s = (k, b) the Boolean
predicate accept [s] is true if and only if the Büchi component b is accepting; if,
in other words, b ∈ FA (or b ∈ FB). The algorithm is identical to Tarjan’s classic
algorithm, except for its use of an additional stack A where the accepting product
states that appear on the depth-first search path are stored. Line 4 inserts such
a state when it is first explored, and line 9 removes it once it has been fully
explored. The test in lines 12 and 13 reports a violation as soon as a transition
“closes” an SCC containing an accepting state. tarjan uses colours to classify
states; initially all states are unexplored and coloured white. As the product
automaton is explored, fully explored states are coloured black, and states that
are still on the depth-first stack or the component stack S, grey. In the classic
presentation of Tarjan’s algorithm [1], this classification is made with Boolean
flags, but it is trivial to see that the methods are equivalent.

Our new algorithm appears in Figure 3, and is called tarjan+. It operates
on the product of a Kripke structure and a TA C. Given two product states
s = (k, c) and s′ = (k′, c′), the predicate stutter(s, s′) is true if and only if c = c′,
in other words, s → s′ is a stuttering transition. Predicate accept [s] is true if and
only if c is a Büchi acceptance state (c ∈ FC), and predicate livelock [s] is true
if and only if c is livelock accepting (c ∈ GC). The three abbreviated conditions
that appear in lines 2b, 4a, and 13a are defined as follows:

C1(p, s) ≡ livelock [s] ∧ (p = ⊥ ∨ ¬stutter(p → s))
C2(s, t) ≡ accept [s] ∧ ¬stutter(s → t)
C3(s, t) ≡ livelock [s] ∧ stutter(s → t)

The first change from tarjan to tarjan+ is moving lines 4 and 9 of tarjan
into the for-loop in line 5; in the new algorithm the lines are labeled 4a and 9a.
Although it is less efficient, this change clearly has no effect on the correctness
of tarjan. However, in the new algorithm the condition in line 4 has also been
strengthened so that a Büchi acceptance state is only placed on stack A for cer-
tain transitions: it is present when the next transition explored is non-stuttering,
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0 for each i ∈ I do if colour [i] = white then tarjan+(⊥, i)

tarjan+(p, s)
1 colour [s] ← grey
2 dfnr [s] ← low [s] ← n ; inc(n)
2a liveset [s] ← ∅
2b if C1(p, s) then L.push(s)
3 S.push(s)
5 for each successor t of s do
4a if C2(s, t) then A.push(s)
6 c ← colour [t]
7 if c = white then tarjan+(s, t)
8 if c �= black then update+(c, s, t)
9a if A.top = s then x ← A.pop
9b if L.top = s then x ← L.pop
9c colour [s] ← blue
10 if low [s] = dfnr [s] then scc(s)

update+(c, s, t)
11 low [s] ← min(low [s], low [t])
12 if low [s] ≤ dfnr [A.top] then
13 report violation
13a if C3(s, t) then addlinks(c, s, t)

addlinks(c, s, t)
18 for each u ∈ liveset [t] ∪ {t} do
19 if colour [u] �= grey then
20 continue at line 18
21 if dfnr [u] ≥ dfnr [L.top]
22 ∧ (u �= t ∨ c �= white) then
23 report violation
24 liveset [s] ← liveset [s] ∪ {u}

Fig. 3. The new algorithm used in this paper
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Fig. 4. Illustrative state graphs for the new algorithm

and absent when it is stuttering. This avoids the erroneous reporting of cycles
that contain only stuttering transitions. Consider, for example, Figure 4(a): if
cb ∈ FC , then states (k1, cb), (k2, cb), and (k3, cb) are all Büchi accepting. How-
ever, none of the states are placed on A when exploring the stuttering transitions
between them, and the cycle (k1, cb) → (k2, cb) → (k3, cb) → (k1, cb) is therefore
correctly ignored. The non-stuttering (k2, cb) → (k4, c) transition satisfies C2,
and state (k2, cb) is placed on stack A before exploring it; the ensuing cycle is
subsequently correctly reported as a violation.

The second change from tarjan to tarjan+ involves the colouring of states.
With the addition of line 9c, tarjan+ further distinguish those states that are
currently on the depth-first stack from those that are only present in S, by
colouring the latter blue. Once again, the detection of Büchi accepting cycles
is not affected, since that part of the code (lines 7 and 8) is only concerned with
the non-white or non-black status of states.
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The last change is the introduction of the L stack and the liveset [ ] attribute
of states. Stack L is analogous to stack A in storing the livelock acceptance
states that appear on the current depth-first search path. However, an important
difference is that states reached via stuttering transitions are not stored. (Only
states that satisfy C1 are pushed onto L.) For each livelock accepting state s,
attribute liveset [s] stores the set of all other states that can be reached via
already-explored stuttering transitions. For those states s′ that are not livelock
accepting, liveset [s′] = ∅. When a stuttering transition s → t is explored and
state s is livelock accepting (condition C3 in line 13a), the contents of liveset [t] is
propagated back to s by procedure addlinks. In addition, if t or some element
of liveset [t] lies on the depth-first stack at or above the top entry of L, a livelock
violation is reported (lines 21–23). (The only exception is the case where s is the
direct depth-first tree parent of t, in line 22.) This is correct by the following
reasoning:

1. s is livelock accepting (since s → t satisfies C3),
2. s can reach some u ∈ liveset [t] via stuttering transitions,
3. u lies at or below s on the depth-first stack (s is the top-most state on the

depth-first stack and colour [u] = grey), and
4. the depth-first stack transitions from u to s are stuttering, since otherwise

stack L would contain an entry such that dfnr [u] < dfnr [L.top] ≤ dfnr [s].

As mentioned above, the algorithm may in certain cases fail to detect a
livelock violation. An example of this is shown in Figure 4(b). Suppose that GC =
{c�}, so that (k2, c�), (k4, c�), and (k6, c�) are the livelock accepting states. If the
stuttering transitions (k4, c�) → (k2, c�) and (k2, c�) → (k6, c�) are explored after
the non-stuttering transitions in their respective states, then the valid livelock
violation (k2, c�) → (k6, c�) → (k4, c�) → (k2, c�) is not reported. This happens
because transition (k6, c�) → (k4, c�) is explored before (k4, c�) → (k2, c�), and
therefore the fact that state (k6, c�) can reach (k2, c�) via stuttering transitions
is never recorded.

Consequently, when tarjan+ fails to report a violation, it is necessary to
run the livelock detection algorithm of [21, 33] before we can claim that a Kripke
structure satisfies an LTL formula, using our approach. This may appear to nul-
lify the advantages of a single one-pass algorithm we extolled before. In practise
it means that the new algorithm may be more efficient at detecting violations,
but less efficient when it comes to checking that there are none.

5 Experimental Results

Table 1 shows the outcome of experiments performed to measure the effect
of using SLBAs and TAs instead of TLBAs. The procedure described in [31]
was used to generate 480 random 100-state Kripke structures and 360 ran-
dom LTL formulas. An additional 130 formulas were taken from the literature
(mostly from [13, 10, 29]), and all formulas were negated. After the elimination
of stuttering-sensitive formulas and duplicates, the remaining 261 formulas were
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Table 1. Comparison of automata on random graphs and random & real formulas

Automata TLBA SLBA TA
Ave. 5.56 17.33 30.89 584.87 16.94 310.43
Max. 53 314 389 18196 193 10944

States & TLBA SLBA TA
transitions SE tarjan SE tarjan tarjan+

All Ave. 30.3 96.2 25.2 80.1 18.6 37.2 17.6 35.2 21.1 43.7
Max. 3342 29404 2533 18250 1154 10184 1103 10041 1294 11284

Viol. Ave. 33.3 105.9 27.3 85.2 20.4 33.8 19.2 31.4 20.0 31.0
Max. 3342 29404 1652 18250 966 5888 613 3831 442 2045

Normalized TLBA SLBA TA
SE tarjan SE tarjan tarjan+

All Ave. 51.1 19.3 38.0 15.8 33.6 8.6 32.5 8.0 57.8 11.8
Max. 1550.0 2800.0 1250.0 2400.0 360.0 700.0 340.0 700.0 200.0 200.0

Viol. Ave. 13.7 7.6 11.3 6.6 9.8 4.9 9.3 4.7 9.5 4.5
Max. 1033.3 1305.3 537.5 700.0 220.0 255.1 200.0 250.0 131.1 107.5

Percentages TLBA SLBA TA
SE tarjan SE tarjan tarjan+

All Best 0.0 0.0 3.1 1.5 0.0 0.0 4.5 2.9 10.3 11.4
1/Best 55.7 66.5 70.2 68.5 40.5 43.4 47.9 47.8 29.0 49.9

Viol. Best 0.0 0.0 4.1 2.0 0.0 0.0 3.7 2.5 13.7 15.1
1/Best 56.8 60.3 65.1 62.9 23.0 26.0 30.5 30.4 38.7 38.3

converted to Büchi automata using the ltl2ba program [16], and SLBAs and
TAs were constructed as described in previous sections. For TLBAs and SLBAs
we used the Schwoon and Esparza modification of the CPVW algorithm [27]
(shown in the “SE” column), and the Tarjan-based algorithm from [17] (shown
in the “tarjan” column). For TAs the modified Tarjan algorithm we mentioned
in the previous section was used (shown in the “tarjan+” column). Even though
the Kripke structures are quite small (100 states) compared to realistic models,
they are large enough for our purposes. Experiments with larger Kripke struc-
tures (still random) yielded similar results.

Every cell of the table contains two numbers, the first refers to the number
of states and the second to the number of transitions. The first part of the ta-
ble labelled “Automata” shows the average and maximum sizes of the TLBAs,
SLBAs, and TAs. From TLBA to SLBA there is roughly a 6-fold increase in
the number of states and a 34-fold increase in the number of transitions. The
average size of a TA is about half that of an SLBA. The next part of the ta-
ble, “States & transitions” shows the average and maximum number of states
and transitions explored, first in all runs, and then in only those runs where
a violation was found. Unfortunately, these numbers are somewhat misleading,
since large and small products carry equal weight. Therefore, the next part of
the table, “Normalized”, describes the same runs, but with the numbers of each
run expressed as a percentage of the size of the product of the Kripke struc-
ture and the TA. The last part of the table labelled “Percentages” indicates in
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what percentage of runs each automaton/algorithm pair did better than any of
the others (the “Best” row), or no worse than any of the others (the “1/Best”
row). Note that the figures in the TA/tarjan+ column include the number of
states and transitions explored by both the tarjan+ algorithm and the livelock
detection algorithm [21, 33] that is run when tarjan+ finds no violation.

We have consciously decided to report only the number of states and tran-
sitions, and not the number of bytes and milliseconds consumed by our im-
plementations. This protects the results (to some extent) against the influence
of various optimizations, implementation tricks, and the central processor and
memory architecture. We generally find that the number of states gives a reliable
indication of the memory required, and, similarly, the number of transitions a
reliable indication of the time consumption.

When we compare only the TLBA/tarjan and TA/tarjan+ combinations,
in the case that a violation was detected, the TAs achieved a 26.7% reduction
in the average number of states, and a 63.6% reduction in the average number
of transitions. For the worst-case performance, TA/tarjan+ reduced the states
and transitions by a factor of 3.7 and 8.9, respectively. When it comes to all runs
(now including those where no violation was detected), the reduction is 16.3%
and 45.4% for the average states and transitions, with factors of 2.0 and 1.6 for
the worst-case states and transitions.

However, the results contain some apparent contradictions: despite the fact
that the TLBA/SE combination has the highest average and worst-case numbers,
it is still one of the best algorithms in more than half the cases. Conversely, the
SLBA/tarjan combination which explores the lowest average number of states
in all runs, only explores the unique, least number of states in 3.7% of those runs.
The cause of this phenomenon is of course the different distribution of costs for
the different combinations.

It is difficult to say which of the algorithms is “best”: for a single run one
may use the TLBA/tarjan combination and know that the probability is less
than 0.35 that another combination can explore fewer states. Invariably, however,
more than one run of a system is required and, in that case, the SLBA/tarjan
combination explores the fewest number of states and transitions, on average.
On the other hand, the worst-case of the TA/tarjan+ combination looks more
promising and it is more often the fastest (≥ 11.4% of cases) and most memory-
efficient (≥ 10.3% of cases) choice.

The amount of work needed by the TLBA in the worst case is so much
bigger that it tilts the averages heavily in favour of the SLBA and the TA.
This, we believe, justifies the conclusion that the variants are, in fact, superior
in performance to the TLBA.

Experience has shown that measurements with random Kripke structures are
often over-optimistic since the “shape” of random and real state spaces can differ
significantly. We would have liked to present experimental results for actual state
spaces, but that approach has its own pitfalls. It is easy to find examples where
one combination fares exceptionally well, while the others founder. Also, each
state space should be verified against a variety of LTL properties to yield robust
results. For now we have to leave this project as future work.
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6 A Closer Look: Why Less Is More?

The results show that it is not so much the size of the automaton itself that
counts, but rather the size of the product of Kripke structure and automaton. In
the negative case—when there is no violation—all states and transitions of the
product need to be explored, and, in the case of our new algorithm, it is done
twice. We therefore investigated the relationship between the formulas and the
size of the resulting products by devising classes of formulas of increasing length
and calculating the size of the product with a set of random Kripke structures.

For the set of experiments we used 100 random 1000-state Kripke structures
with a varying number of transitions. We constructed the TLBAs, SLBAs and
TAs for the formulas we describe below and calculated their products with the
Kripke structures. Table 2 shows the average number of states and transitions
obtained in each case. The first column gives the formula class and n. The “E”
formulas were of the form

E(n) =
n∧

i=1

�pi,

and the “U” and “R” were of the form

U(n) = (· · · (p1Up2)U · · ·)Upn and R(n) =
n∧

i=1

(��pi ∨ ��pi+1).

The simplest, E(n) formulas resulted in products with the same number
of states for all the automata, while the TAs produced a somewhat smaller
number of transitions. The two more complicated classes result in differences
that increase with the length of the formula.

Table 2. Growth of state spaces

TLBA SLBA TA
E(1) 1999.90 9126.84 1999.90 9126.84 1999.86 7730.18
E(2) 3999.68 23690.54 3999.68 23690.54 3999.62 19057.17
E(3) 7999.24 62119.04 7999.24 62119.04 7999.24 49853.79
E(4) 15998.36 164327.68 15998.36 164327.68 15998.36 134019.09
E(5) 31996.61 437872.53 31996.61 437872.53 31996.61 363967.54
U(1) 1188.75 5195.20 1145.54 5095.67 1151.85 4473.37
U(2) 3082.19 20936.82 2266.81 14020.64 2266.76 10772.02
U(3) 8702.22 92692.54 6185.00 66821.92 6233.29 47379.99
U(4) 22162.49 373415.82 15286.18 266001.99 15257.98 187339.66
U(5) 53471.09 1432869.88 35175.60 980114.68 34998.03 703055.77
R(1) 3619.32 17790.64 3326.13 16635.44 3647.73 15555.14
R(2) 9674.17 49992.48 8195.00 43328.05 8115.63 34584.78
R(3) 26620.67 150150.63 20492.62 117661.40 20113.34 88977.67
R(4) 72449.32 460101.94 51041.64 328031.95 50019.04 239408.10
R(5) 194741.06 1447741.57 127220.17 951739.06 124600.22 675327.73
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We experimented with other classes as well, but were unable to find any
where the TLBA products are smaller. There were classes where the results
were similar to the E formulas, including

U2(n) = p1U(p2U(· · · pn−1Upn) · · ·),

C1(n) =
n∨

i=1

��pi and C2(n) =
n∧

i=1

��pi.

Other classes performed much like the U and R formulas, for example

Q(n) =
n∧

i=1

(�pi ∨ �pi+1) and S(n) =
n∨

i=1

�pi.

The smaller products have very little, if anything, to do with the livelock
acceptance states of the testing automata, since the state-labelled automata
result in products that are just as small. So the question remains, why do the
SLBAs and TAs produce smaller products? We cannot give a definitive answer,
but we believe that there are two important factors:

Firstly, an SLBA makes a finer distinction between different states, in the
sense that the state of the SLBA contains more information about the state of
the product than is the case for the TLBA. Undoubtably the TLBA is a more
dense representation of the property than the equivalent SLBA. In other words,
in the product several Kripke states may be paired with the same TLBA state,
but because the automaton will later have to distinguish between the states,
extra work needs to be performed.

Secondly, and partly because of the first reason, the TLBA is, in a sense, more
nondeterministic and therefore, on average, more of its transitions are enabled
in a given state. In [28] the authors suggest that more deterministic, rather than
smaller automata result in smaller products, and to some extent, the generation
of the SLBA removes some of the nondeterminism.

The sometimes significantly smaller number of transitions in the products of
TAs can be explained, at least in part, by the fact that they have no stuttering
transitions and therefore cannot cause a multiplication of stuttering steps of
the Kripke structure. The theoretical results in [21], which state that testing
automata are more often deterministic, do not, however explain anything at all
in these findings, since the SLBA and TA products have almost exactly the same
number of states.

The size of the product is not an accurate measure of performance when
there actually is a violation. It might be the case that a counterexample is found
relatively early on in a bigger product. This may be due to two factors. Firstly,
the decision of which transitions to explore first in the on-the-fly algorithm may
play a crucial role. An endless variety of heuristics and shufflings of transitions
are possible and we currently know of no definitive way to decide which is best.
Secondly, the counterexamples themselves may have different properties. The
SLBA- or TA-induced product may be smaller but contain only relatively few,
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lengthy and complicated counterexamples, whereas the product arising from a
TLBA may be big but have more shallow and simple counterexamples. One
open question is exactly what the relative contribution of the two phenomena in
different circumstances is.

7 Conclusions

We have investigated two alternatives to the standard (transition-labelled) form
of Büchi automata, namely state-labelled Büchi automata and testing automata,
described the conversion from the standard form to the variant forms, and
sketched our current (SCC-based) algorithm for verification with testing au-
tomata. Even though the differences between the automata may appear to be
merely a matter of notation, our experimental results suggest that there are real
benefits to be had from using the variant forms.

To explain the improved performance of the variants, we considered simple
classes of LTL X formulas and compared the products of a set of random Kripke
structures with the transition-labelled and state-labelled Büchi automata and
testing automata. Despite the fact that the variant automata are invariably
much larger, the resulting product automata are invariably smaller. In the case
of testing automata, the number of transitions is clearly smaller and grows at a
much slower rate than is the case for the other two automata.

Two factors that play a role in this phenomenon are (1) that SLBAs and
TAs make finer distinctions among states, and (2) that they are more often
deterministic than standard Büchi automata. This concurs with the work in [28],
where the authors focused on the standard form.

Our research perhaps raises more questions than it answers. By no means
do we wish to discourage further work on the reduction of Büchi automata or
other ω-automata; rather our results point to the need to further investigate
the factors that lead to improved performance. Other lines of future research
include the characterization of LTL X properties for which the SLBAs and TAs
do better, and an extension of these results to generalized Büchi automata and
alternating automata.
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Report HUT–TCS–A79, Laboratory for Theoretical Computer Science, Helsinki
Univ. of Technology, Jul 2003.

33. A. Valmari. On-the-fly verification with stubborn sets. In CAV’93, LNCS #697,
pp. 397–308, Jun 1993.

34. M. Y. Vardi, P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st IEEE Symp. on Logic in Computer Science, pp. 332–344,
Jun 1986.

35. P. Wolper. Temporal logic can be more expressive. Information and Computation
56, pp. 72–99, 1983.

36. P. Wolper, M. Y. Vardi, A. P. Sistla. Reasoning about infinite computation paths.
In Proc. 24th IEEE Symp. on the Foundations of Computer Science, pp. 185–194,
IEEE Computer Society Press, Nov 1983.



Don’t Know in Probabilistic Systems

Harald Fecher1, Martin Leucker2, and Verena Wolf3

1 Institute of Informatics, University of Kiel, Germany
2 Institute of Informatics, TU Munich, Germany

3 Institute of Informatics, University of Mannheim, Germany

Abstract. In this paper the abstraction-refinement paradigm based on
3-valued logics is extended to the setting of probabilistic systems. We
define a notion of abstraction for Markov chains. To be able to relate the
behavior of abstract and concrete systems, we equip the notion of ab-
straction with the concept of simulation. Furthermore, we present model
checking for abstract probabilistic systems (abstract Markov chains) with
respect to specifications in probabilistic temporal logics, interpreted over
a 3-valued domain. More specifically, we introduce a 3-valued version of
probabilistic computation-tree logic (PCTL) and give a model checking
algorithm w.r.t. abstract Markov chains.

1 Introduction

Abstraction is one of the most successful techniques for fighting the state space
explosion problem in model checking [4]. Abstractions hide some of the details of
the verified system, thus resulting in a smaller model. In the seminal papers on
abstraction-based model checking, conservative abstractions for true have been
studied. In this setting, if a formula is true in the abstract model then it is also
true in the concrete (precise) model of the system. However, if it is false in the
abstract model then nothing can be deduced for the concrete one [3].

In the 3-valued setting, the goal is to define abstractions that are conservative
for both true and false. Therefore, a third value indefinite (also called don’t
know), denoted by ?, is introduced that identifies when too much information is
hidden to decide whether the formula evaluates to true or false in the concrete
system. Thus, indefinite indicates that the abstract system has to be refined,
meaning that less information should be concealed.

Kripke Modal Transition Systems (KMTS, [13]) have become a popular de-
vice to model abstractions of transition systems. In the abstraction process,
states of the concrete system are grouped together in the abstract system. Tran-
sitions between sets of concrete states are then classified as must or may edges.
Very roughly, may edges are a kind of over approximation while must edges are
a kind of under approximation.

In this paper, we study abstractions for (labeled discrete-time) Markov chains
(MCs). MCs are a typical underlying model for sequential probabilistic programs
or probabilistic process algebras [19]. In simple words, MCs are transition sys-
tems where the transitions are enriched with transition probabilities. To get an
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abstraction in the same spirit as the one for KMTS, one could again group states
of the concrete system together to obtain an abstract system. Then we have to
come up with a suitable notion of over and under approximation of transitions.
We suggest to label transitions by intervals of probabilities, similar as in [15, 20].
The lower bound of an interval represents an under approximation while the
upper bound is used for the over approximation.

This motivates to define the notion of Abstract Markov Chains (AMCs) as a
kind of transition system where transitions are labeled with intervals of probabil-
ities. To compare the behavior of a given AMC and a given MC, we introduce a
simulation relation, called probabilistic simulation. We call an AMC M ′ coarser
or an abstraction of AMC M if M ′ simulates M and vice versa M is called finer
or a refinement of M ′. We show that the abstractions obtained by the process
mentioned above are in the simulation relation.

When AMCs are used in the context of abstraction, we motivate that only
certain combinations of intervals are meaningful and call such AMCs delim-
ited. Cutting arbitrary AMCs to delimited ones, also during the model checking
process, will give more precise results at (nearly) no cost, as we will describe.

Our main motivation for abstraction is model checking. For probabilistic
systems, Jonsson and Hansson introduced Probabilistic Computation Tree Logic
(PCTL) [10] that allows formulation of statements involving the measure of
certain paths. We give PCTL a 3-valued semantics over AMCs. The semantics is
defined, as we show, in the right manner w.r.t. abstractions: If a formula evaluates
to true or false in the abstract system, it does so in the concrete system. If the
result is indefinite, nothing can be said about the concrete system.

We then present (two versions of) a model checking algorithm for AMCs
and 3-valued PCTL. The gist of our algorithms is to use 3-valued combinations
instead of boolean (as in the 2-valued case) for state formulas and to compute
measures for each path property similar as in the setting of Markov decision
processes [1, 7].

Recently, 3-valued-based model checking and refinement has gained a lot
of interest. A framework for 3-valued abstraction is introduced in [13, 8]. In
[17, 16, 2], model checking of 3-valued (or multi-valued) versions of CTL or CTL∗

have been studied. Game-based approaches allow an elegant treatment of refine-
ment and have been presented in [18, 9] in the setting of CTL and respectively
the μ-calculus.

General issues for abstractions of probabilistic systems are discussed in [12, 14]
while we concentrate on a specific abstraction together with dedicated model
checking algorithms. The closest works to ours are [6] and [11]. In [6], Markov
decision processes are proposed for abstracting of MCs. However, they only
consider reachability properties while we study PCTL model checking. More
importantly, our notion of simulation is coarser—thus allowing for coarser and
therefore smaller abstractions—while maintaining soundness w.r.t. 3-valued
PCTL. In [11]1, criterias have been engineered that guarantee an abstraction to
be optimal (in some sense). While, of course, such an optimal abstraction sounds

1 We thank the author for providing us the as yet unpublished manuscript.
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preferable, the approach loses some of its elegance since—in simple words—it
requires storage of much information. Furthermore, it is not clear (to us) how to
obtain this information without constructing the underlying MC.

We conclude our paper by discussing the pros and cons of the different ap-
proaches in detail and order them w.r.t. their precision (in a sense made precise
below).

Outline AMCs are derived in the next section. Before, introducing 3-valued
PCTL in Section 4, we discuss the relation of measures of paths in finer and
coarser systems first for reachability properties, in Section 3. The model checking
algorithms for PCTL is given in Section 5. We compare our framework with
existing ones in Section 6.

2 Abstract Markov Chains

To introduce our notion of abstraction, let us consider the Markov chain shown
in Figure 1(a). A Markov chain consists of states labeled with propositions. The
states are connected by transitions that are labeled with probabilities for taking
the corresponding transitions. Following the idea of Kripke Modal Transition
Systems, states of the concrete system are grouped together in the abstract
system. For example, s5 and s6 form the abstract state A2 (Figure 1(b)). While
in the case of transition systems, we obtain so-called may- and must -transitions
denoting that there may be a transition from one state to the other, or, there
is a transition for sure, we deal with lower and upper bounds on the transition
probabilities here. For example, we say that we move from A2 to A1 with some
probability in [0, 1

4 ] since we either cannot move to A1 (when in s6) or move to
A1 with probability 1

4 (when in s5). This motivates the definition of an abstract
Markov chain. Let us first fix some notation:

A1

A2 A3

s1 s2 s3 s4

s5 s6 s7 s8

2
3

1
2

1
2

1
4

3
4

3
4

1
3

1
3

1
3 1

1
3

1
1
3

1
4

1
3

1
3

(a) Markov Chain

A1

A2 A3

[0, 3
4 ]

[ 14 , 2
3 ]

[0, 1
3 ]

[ 13 , 3
4 ]

[0, 1
4 ]

[0, 1]

[ 23 , 1]

(b) AMC

Fig. 1. A Markov chain and its abstraction
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Let AP be a nonempty finite set of propositions and B3 = {⊥, ?,�} the
three valued truth domain. Let X be a finite set. For Y, Y ′ ⊆ X and a function
Q : X × X → R let Q(Y, Y ′) =

∑
y∈Y

∑
y′∈Y ′ Q(y, y′). We omit brackets if

Y or Y ′ is a singleton. The function Q(x, ·) is given by x′ �→ Q(x, x′) for all
x′ ∈ X . Furthermore let psdistr(X) = {f : X → [0, 1]} be the set of all pseudo
distribution functions on X and distr(X) = {f ∈ psdistr(X) |

∑
x∈X f(x) = 1}

the set of distributions on X .

Definition 1. An abstract Markov chain (AMC) is a tuple (S, P l, Pu, L) where:

– S is a finite set of states,
– P l, Pu : S×S → [0, 1] are matrices describing the lower and upper bounds for

the transition probabilities between states such that for all s, s′ ∈ S, P l(s, ·)
and Pu(s, ·) are pseudo distribution functions and

P l(s, s′) ≤ Pu(s, s′) and P l(s, S) ≤ 1 ≤ Pu(s, S), (1)

– L : S × AP → B3 is a labeling function that assigns a truth value to each
pair of state and proposition.

Note that with condition (1) we do not consider states without any outgoing
transition. We call an AMC M = (S, P l, Pu, L) a Markov chain (MC) if P l =
Pu =: P . Note that in this case P (s, ·) ∈ distr(S), for all s ∈ S. Let X be a
finite set. Let gl, gu be a pair of functions in psdistr(X) with gl(x) ≤ gu(x) for
all x ∈ X . We write g(x) for the interval [gl(x), gu(x)] ⊆ [0, 1] and distr (g) for
the set {f ∈ distr(X) | ∀x ∈ X : f(x) ∈ g(x)}. If gl = Ql(x, ·) and gu = Qu(x, ·)
for some Ql, Qu ∈ psdistr(X × X) we put distr (Q(x, ·)) = distr(g).

Let us now formalize the notion of abstraction:

Definition 2. Let M = (S, P l, Pu, L) be an AMC and A = {A1, A2, . . . , An} ⊆
2S a partition of S, i.e. Ai �= ∅, Ai∩Aj = ∅ for i �= j, 1 ≤ i, j ≤ n and

⋃n
i=1 Ai =

S. Then the abstraction of M induced by A is the AMC abstract(M,A) =
(S̃, P̃ l, P̃u, L̃) given by

– S̃ = A,
– P̃ l(Ai, Aj) = mins∈Ai P l(s, Aj) and P̃u(Ai, Aj) = maxs∈Ai Pu(s, Aj).
– For a ∈ AP the labeling of an abstract state (also called macro state) A ∈ A

is given by

L̃(A, a) =

⎧⎨⎩
�, if L(s, a) = � for all s ∈ A,
⊥, if L(s, a) = ⊥ for all s ∈ A,
?, otherwise.

Example 1. Figure 1 (a) illustrates a MC with 8 states. These states are grouped
together, denoted by the dashed grey circles, to form the abstract system with
three states.2 The intervals of probabilities are obtained as described before. For
simplicity we consider a single proposition a ∈ AP that holds exactly in all grey
shaded states. Thus, in the abstract system, we get L̃(A1, a) =?, L̃(A2, a) = ⊥
and L̃(A3, a) = �.
2 Note that the question of how to partition the state space usually depends on where

MCs are used and is beyond the scope of this paper.
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u[ 12 , 3
4 ]
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u[ 14 , 3
4 ]

[ 14 , 3
4 ]

(c)

Fig. 2. Sharpening and widening the intervals

Scheduler. In the setting of AMCs, in every state s, there is a choice for the distri-
bution yielding the probabilities to reach successor states. This non-determinism
can be resolved by means of a scheduler: A (history-dependent) scheduler for a
state s0 is a function η : s0S

∗ → distr(S ×S) that maps each sequence of states
s0 . . . s to a distribution in distr (P (s, ·)). The set of all schedulers for an AMC
M starting in state s0 is denoted by S(M, s0). We write S(s0) if M is clear from
the context.

Delimited AMCs. Since a scheduler is defined to select only distributions (rather
than pseudo distributions), we can sharpen the definition of AMCs, motivated
as follows (see also [20]):

Consider the AMC M in Figure 2, (a)3. Assume that one chooses the value 3
4 ,

i.e. Pu(s, v) = P l(s, v) = 3
4 , from the interval [14 , 3

4 ] labeling the transition from
state s to v. But then, the transition probability from state s to u is P (s, u) =
1−P (s, v) = 1

4 �∈ [ 12 , 3
4 ]. This problem does not occur in case (b) and (c) of Figure

2. The AMC in case (b) is ”finer” than (a) since [14 , 1
2 ] ⊂ [14 , 3

4 ], whereas case
(c) is more abstract than (a). In the following we will “cut” AMCs so that cases
with “non-constructive” information do not occur and give a transformation that
refines an AMC such that the conditions are fulfilled. Thus, for the example, we
change from case (a) to the finer model of (b) rather than to (c).

Definition 3. For a finite set X let gl, gu ∈ psdistr(X) with gl(x) ≤ gu(x) for
all x ∈ X. The cut of gl and gu is the pair cut(gl, gu) = (f l, fu) given by

f l(x) = min{h(x) | h ∈ distr(g)} fu(x) = max{h(x) | h ∈ distr(g)}

We call an AMC M = (S, P l, Pu, L) delimited iff for all s ∈ S it holds that

cut(P l(s, ·), Pu(s, ·)) = (P l(s, ·), Pu(s, ·)).

Summing up, cut deletes values that cannot be completed to a distribution, so
no scheduler of an AMC gets lost:

Lemma 1. Let M = (S, P l, Pu, L) be an AMC and M ′ = (S, cut(P l, Pu), L)
the delimited version of M . Then for all s ∈ S,

S(M, s) = S(M ′, s)
3 We sometimes omit outgoing transitions in examples from now on.
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Fig. 3. Cutting abstraction: (a) abstracted to (b) delimited to (c)

Note that the cut operator is easy to calculate, e.g., the lower bound of the
transition probability for s to s′ will be max{P l(s, s′), 1 −

∑
s′′ �=s′ Pu(s, s′′)} in

the delimited version. If a lower bound is adapted no upper bound has to be
adapted and vice versa.

If we construct abstract(M,A) we always receive a delimited AMC if M is
a MC. This is not necessarily the case if M is an AMC, even if M is delimited,
as Figure 3 shows.

Remark 1. In the following we assume that w.l.o.g. all considered AMCs are
delimited unless otherwise stated.

Extreme Distributions. As will become apparent in the following, distributions
taking up values on the borders of intervals, called extreme distributions, are of
special interest. Let gl, gu ∈ psdistr(X) with gl(x) ≤ gu(x) for all x ∈ X and
cut(gl, gu) = (gl, gu). For X ′ ⊆ X let exmin(gl, gu, X ′) be the set of distributions
h ∈ distr (g) such that X ′ = ∅ implies h = gl = gu and X ′ �= ∅ implies

∃x ∈ X ′.h(x) = gl(x) ∧ h ∈ exmin(cut(gl, gu[x �→ gl(x)]), X ′ \ {x}),
where f [s �→ n] denotes the function that agrees everywhere with f except at
s where it is equal to n. Dually, let exmax (gl, gu, X ′) be the set of distributions
h ∈ distr (g) such that X ′ = ∅ implies h = gl = gu and X ′ �= ∅ implies

∃x ∈ X ′.h(x) = gu(x) ∧ h ∈ exmax (cut(gl[x �→ gu(x)], gu), X ′ \ {x}).
Definition 4. We say that a distribution h ∈ distr(g) min-extreme if h ∈
exmin(gl, gu, X) and max-extreme if h ∈ exmax (gl, gu, X). h is called extreme if
it is min-extreme or max-extreme.

Simulation. To compare the behavior described by two AMCs, we introduce the
notion of probabilistic simulation that is an extension of probabilistic simulation
for MCs [15].

Definition 5. Let M = (S, P l, Pu, L) be an AMC. We call R ⊆ S ×S a prob-
abilistic simulation iff sRs′ implies:

1. ∀a ∈ AP : (L(s′, a) �=?) =⇒ L(s′, a) = L(s, a),
2. for each h ∈ distr(P (s, ·)) there exists h′ ∈ distr (P (s′, ·)) and δ ∈ distr(S ×

S) such that for all u, v ∈ S

(i) δ(u, v) > 0 =⇒ uRv, (ii) δ(u, S) = h(u), (iii) δ(S, v) = h′(v).
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We write s � s′ iff there exists a probabilistic simulation R with sRs′. For
AMC Mi = (Si, P

l
i, P

u
i, Li), si ∈ Si, i = 1, 2 we write s1 � s2 iff there exists a

probabilistic simulation R on S1 ∪ S2 with s1Rs2 in the composed AMC of M1
and M2 (which is constructed in the obvious way, assuming S1 ∩ S2 = ∅).

Note that if s � s′ then all possible distributions h of s are matched by a
distribution h′ of s′. The opposite does not hold, i.e., the set distr(P (s′, ·)) may
contain distributions that can not be simulated by a distribution of s.

The previously defined abstraction operator induces a simulation:

Theorem 1. Let M = (S, P l, Pu, L) be an AMC and abstract(M,A) an ab-
straction of M induced by a partition A of S. Then s is simulated by its macro
state, i.e. for all s ∈ S, A ∈ A

s ∈ A =⇒ s � A.

Example 2. Consider the MC M of Example 1, Figure 1. We have s4 � A1, for in-
stance: Let R = {(si, A1) | 1 ≤ i ≤ 4}∪{(s5, A2), (s6, A2)}∪{(s7, A3), (s8, A3)}.
Since L̃(a, A1) = ? condition (1) of Definition 5 is trivially fulfilled. Checking
condition (2) for (s4, A1) yields: δ(s3, A1) = δ(s4, A1) = δ(s6, A2) = 1

3 and 0 for
all remaining pairs. Then h′ ∈ distr(A) with h′(A1) = δ(s3, A1)+ δ(s4, A1) = 2

3 ,
h′(A2) = 1

3 , and h′(A3) = 0 is an element of distr (P̃ (A1, ·)) such that condition
(2) is fulfilled.

3 Measures and Simulation

Let us define a notion of measure for AMCs and discuss how measures are related
w.r.t. simulation. Here, we study reachability properties. In the next section, we
extend our study to a three-valued version of Probabilistic Computation Tree
Logic (PCTL).

A nonempty set Ω of possible outcomes of an experiment of chance is called
sample space. A set B ⊆ 2Ω is called Borel field (or σ-algebra) over Ω if it
contains Ω, Ω \ E for each E ∈ B, and the union of any countable sequence
of sets from B. The subsets of Ω that are elements of B are called measurable
(w.r.t. B). A Borel field B is generated by an at most countable set E , denoted
by B = 〈E〉, if B is the closure of E ’s elements under complement and countable
union.

A probability space is a triple PS = (Ω, B, Prob) where Ω is a sample space,
B is a Borel field over Ω, and Prob is a mapping B → [0, 1] such that Prob(Ω) =
1 and Prob(

⋃∞
i=1 Ei) =

∑∞
i=1 Prob(Ei) for any sequence E1, E2, . . . of pairwise

disjoint sets from B. We call Prob a probability measure.
For an AMC M = (S, P l, Pu, L), let Ω = Sω be the set of trajectories (also

called paths) of M . Let B be the Borel field generated by {C(π) | π ∈ S∗}, where
C(π) = {π′ ∈ Ω | π is a prefix of π′} is the basic cylinder set of π. A sched-
uler η ∈ S(M, s0) induces a probability space PSη = (Ω, B, Probη) as follows:
Probη is uniquely given by Probη(Ω) = 1 and, for n ≥ 1, Probη(C(s0s1 . . . sn)) =
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h1(s1) . . . hn(sn), where hi = η(s0 . . . si−1), for i ∈ {1, . . . , n}, is the probability
distribution selected by η. We set Probη(C(s′0s

′
1 . . . s′n)) = 0 if s′0 �= s0. Further-

more, we put π(s) = C(s) and for n = 0, 1, 2, . . . let π[n] denote the n-th state
of π.

When interested in the infimum of probabilities of measurable sets w.r.t. all
schedulers, it suffices to consider only extreme distributions, which take values
only at boundaries of intervals. A scheduler is called extreme iff it only chooses
extreme distributions. The set of all extreme schedulers for state s is denoted by
ES(M, s) and ES(s) if M is known.

Theorem 2. For state s in an AMC, we have for every measurable set Q of the
induced probability space that

inf
η∈ES(s)

Probη(Q) = inf
η∈S(s)

Probη(Q)

The previous theorem can easily be shown as follows: Take a scheduler η and
show that the measure is reduced (or stays the same) when changing η to an
extreme distribution.

Note that while there are typically infinitely many distributions leading
from one state to the other in an AMC, there are only finitely many extreme
distributions.

Let us compare the notion of AMCs with the one of Markov decision processes
(MDPs) in the three-valued setting: A Markov decision process (MDP) is a
tuple M = (S, Σ,Prob, L), where S is a finite set of states, Σ is a non-empty
finite set of letters, Prob : S × Σ ⇀ distr(S) is a partial function that yields
for a state s and a given letter σ a distribution function for successor states.
L : S × AP → B3 is a labeling function that assigns a truth value to each pair
of state and proposition.

The MDP M ′ = MDP(M) induced by an AMC M = (S, P l, Pu, L) is given
as M ′ = (S, Σ,Prob, L) where Σ = {σh | h ∈ distr(P (s, ·)) for some s ∈
S and h is extreme}, Prob is such that Prob(s, σh) = h if h ∈ distr(P (s, ·))
and h is extreme and Prob(s, σh) is undefined otherwise.

Thus, MDP(M) defines a Markov decision process with the same state space
as M but with (finitely-many) extreme distributions. The notion of schedulers
carries over in the expected manner, i.e. ES(M, s) = ES(MDP(M), s) for all
states s. More importantly, the infimum of the measure of some measurable set
with respect to some scheduler class obviously coincides, due to Theorem 2.

For the remainder of this section, let us now concentrate on reachability
properties. More specifically, for an AMC M and s one of its state, a proposi-
tion a ∈ AP , α ∈ B3 and n = 0, 1, 2, . . ., let, Reach(s, a, α, n) := {π ∈ π(s) |
L(π[n], a) = α and for all k < n, L(π[k], a) �= α} and

Reach(s, a, α) =
⋃
n≥0

Reach(s, a, α, n)

For reachability properties, it was shown in the setting of Markov decision
processes (MDPs), that the infimum with respect to all schedulers agrees with
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the one when only so-called simple schedulers are considered [7]. A scheduler
η ∈ S(M, s) is called simple iff for all π, π′ ∈ S∗, s′ ∈ S, we have η(sπs′) =
η(sπ′s′), meaning that the choice does not depend on the history π. Thus, a
similar result holds for AMCs as well. The set of simple schedulers that choose
only extreme distributions is denoted by SES(M, s) for AMC or MDP M . Since
there are only finitely many simple extreme schedulers, the infimum is indeed a
minimum. Thus, we get

Lemma 2. For state s, a ∈ AP , and α ∈ B3 it holds that

infη∈S(s) Probη(Reach(s, a, α))
= infη∈SES(s) Probη(Reach(s, a, α))
= minη∈SES(s) Probη(Reach(s, a, α))

Let us now compare the behavior of two AMCs w.r.t. abstraction, i.e., simulation.
We give the intuition of the following Lemma first. Let s0 � s′0. When scheduler
η ∈ S(s0) chooses some distribution h0, there is, according to the definition of
simulation, a corresponding h′

0 ∈ distr(P (s′0, ·)). This implies that for every state
s1 reachable by h0 with positive probability, there is a set of states s′11

, . . . , s′1k1

reachable by h′
0 with positive probability, each simulating s1. Now, for s0s1, we

can argue in the same fashion: For η(s0s1) = h1 there is a corresponding h′
1i

for
each s′0s

′
1i

, and so on. . .
Let us be more precise: For a scheduler η ∈ S(s0) we define a scheduler

η′ ∈ S(s′0) inductively as follows: For h = η(s0) define η′(s′0) = h′, where h′ is as
in the definition of the simulation relation. Similarly, let s0 . . . sn be a sequence of
states such that Probη(C(s0 . . . sn)) > 0 and h = η(s0 . . . sn). By induction, there
is a set of states s′n1

, . . . s′nk
each simulating sn. For each s′n′ ∈ {s′n1

, . . . s′nk
},

define η′(s′0 . . . s′n′) = h′, where h′ is as in the definition of the simulation relation.

Lemma 3. For α ∈ {�,⊥}, a ∈ AP it holds that s � s′ implies

inf
η∈S(s)

Probη(Reach(s, a, α)) ≥ inf
η′∈S(s′)

Probη′
(Reach(s′, a, α))

The previous lemma can be shown by induction on n, where n is the position
where the proposition a has value α for the first time. Induction hypothesis is
that

Probη(Reach(s, a, α, n)) = Probη′
(Reach(s′, a, α, n))

≥ infη′′∈S(s) Probη′′
(Reach(s′, a, α, n))

where η′ is the scheduler constructed for η as described above and η may be the
one for which the infimum is taken.

Note that for the supremum, the corresponding result only holds when adding
the paths that reach a state for which a evaluates to ?:

Lemma 4. For α ∈ {�,⊥}, a ∈ AP we have that s � s′ implies

sup
η∈S(s)

Probη(Reach(s, a, α)) ≤ sup
η′∈S(s′)

Probη′
(Reach(s′, a, α)∪Reach(s′, η′, a, ?))



80 H. Fecher, M. Leucker, and V. Wolf

Thus, Lemma 2 and Lemma 3 yield that the lower bound for some reachability
property in the coarser system is less or equal than in the finer system.

Theorem 3. Let s, s′ be states in an AMC with s � s′ and a ∈ AP , and
α ∈ {�,⊥}. Then

min
η∈S(s)

Probη(Reach(s, a, α)) ≥ min
η′∈SES(s′)

Probη′
(Reach(s′, a, α))

In simple words, the previous theorem says that when the minimum of a reach-
ability property is at least p in the coarser system, it is so in the finer system as
well.

4 3-Valued PCTL

Recall that AP denotes a nonempty finite set of propositions. The set of Prob-
abilistic Computation-Tree Logic (PCTL) [10, 5] formulas over AP , denoted by
PCTL, is the set of state-formulas ϕ inductively defined as follows:

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | [Φ]��p Φ ::= Xϕ | ϕ U ϕ

where 	
 ∈ {≤, <,≥, >}, p ∈ [0, 1] and a ∈ AP . The formulas defined by Φ are
called path-formulas4.

In the setting of AMCs, a state might no longer just satisfy or refuse a
formula, but a third value ? (don’t know) is appropriate. Consequently, we define
the satisfaction of a formula w.r.t. a state as a function into B3, which forms a
complete lattice ordering the elements as ⊥ < ? < �. Joins and meets in this
lattice are denoted by � and �, respectively. Complementation is denoted by ,̄
where � and ⊥ are complementary to each other while ? =?.

When a formula evaluates in a state to � or ⊥, we sometimes say that the
result is definite. Otherwise, we say that it is indefinite. Similarly, we say the
result holds for sure or is violated for sure if it evaluates to � respectively ⊥.
We say it may be true or may be false if it evaluates to ?.

Given an AMC M = (S, P l, Pu, L) and a PCTL formula ϕ we define the
satisfaction function [[s, ϕ]] for state s ∈ S and [[π, Φ]] for trajectory π ∈ Sω induc-
tively as shown in Figure 4, where Prl(s, Φ, α) = infη∈SES(s) Probη({π ∈ π(s) |
[[π, Φ]] = α}) for α ∈ B3. For the cases 	
 = < and 	
 = > the value of [[s, [Φ]��p]]
is similar to the cases ≤ and ≥, respectively, but we exchange ≤ by < and vice
versa.

To understand why the above semantics is sound with respect to the notion
of simulation in Definition 5 we discuss each operator in the following and state
the soundness result later in Theorem 4.

Case true, false, a,∧,¬: The semantics is defined as expected for the base and
boolean cases.
4 To simplify the presentation, we omit the bounded until operator given in [10], which

could easily be added.
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[[s, true]] = � [[s, false]] = ⊥
[[s, a]] = L(s, a)
[[s, ϕ1 ∧ ϕ2]] = [[s, ϕ1]] � [[s, ϕ2]] [[s, ¬ϕ1]] = [[s, ϕ1]]

[[s, [Φ]≥p]] =
� if Prl(s, Φ, �) ≥ p

⊥ if Prl(s, Φ, ⊥) > 1 − p

? otherwise
[[s, [Φ]≤p]] =

� if Prl(s, Φ, ⊥) ≥ 1 − p

⊥ if Prl(s, Φ, �) > p

? otherwise
[[π, Xϕ1]] = [[π[1], ϕ1]]

[[π, ϕ1 U ϕ2]] =
� if ∃i.([[π[i], ϕ2]] = � and ∀0 ≤ j < i.[[π[j], ϕ1]] = �)
⊥ if ∀i.([[π[i], ϕ2]] �= ⊥ =⇒ ∃0 ≤ j < i.[[π[j], ϕ1]] = ⊥)
? otherwise,

Fig. 4. Semantics of PCTL formulas

Case X and U : The truth value of [[π, Xϕ1]] equals the result of ϕ1 in state
π[1]. A trajectory π satisfies the formula ϕ1 U ϕ2 for sure, if ϕ1 holds for sure
until ϕ2 holds for sure. It is violated, if either ϕ2 is always wrong for sure, or
otherwise ϕ1 is violated before.

Case [Φ]≥p: For [Φ]≥p, the situation is slightly more involved. First, we re-
mark that Lemma 2 holds also for PCTL path properties, i.e. that is suffices to
consider simple extreme schedulers instead of arbitrary ones.

Lemma 5. Let M be an AMC, s one of its states, Φ a path property of PCTL,
α ∈ B3, and Q = {π ∈ π(s) | [[π, Φ]] = α}. Then

inf
η∈S(s)

Probη(Q) = inf
η∈SES(s)

Probη(Q) = min
η∈SES(s)

Probη(Q)

In view of the simulation relation we can show that coarser systems yield even
lower bounds than finer systems.

Lemma 6. For states s, s′ in an AMC with s � s′ and Φ a path property of
PCTL, α ∈ {�,⊥}, Q = {π ∈ π(s) | [[π, Φ]] = α}, Q′ = {π ∈ π(s′) | [[π, Φ]] = α}
we have

min
η∈SES(s)

Probη(Q) ≥ min
η′∈SES(s′)

Probη′
(Q′)

The previous lemmas can easily be shown as their counterparts for reachability
properties listed in the previous section.

For [Φ]≥p, we measure the paths starting in s for which Φ evaluates to � and
check whether the lower bound of this measure is greater or equal to p. If so,
the result is � and for a finer state s′ with s′ � s this measure is also greater
than p.

For scheduler η ∈ SES(M, s′) we set pη
α = Probη({π ∈ π(s′) | [[π, Φ]] = α})

and observe that
∑

α∈B3
pη

α = 1. If the measure of the paths starting in s for
which Φ evaluates to ⊥ is greater than 1− p, then this is also the case for s′, i.e.
pη
⊥ > 1− p. Therefore, this leaves less than 1− (1− p) = p for pη

� + pη
? . In other

words, even if pη
? is added to pη

�, the constraint ≥ p cannot be met. Therefore,
we decide for ⊥.
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Case [Φ]≤p: For [Φ]≤p, we consider the measure of paths starting in s for
which Φ evaluates to �. If the lower bound is already bigger than p, it is so
especially so for s′ and we decide for [Φ]≤p as ⊥. Similarly, if for enough paths Φ
evaluates to ⊥, we can be sure that the measure of paths satisfying Φ is small.
If Prl(s, Φ,⊥) ≥ 1 − p then in the finer system for all η ∈ SES(M, s′) we get
pη
⊥ ≥ 1 − p. But then pη

? + pη
� ≤ 1 − (1 − p) = p. In other words, even if pη

? is
added to pη

�, the constraint ≤ p is fulfilled and we go for �.
The following theorem states that our framework developed so far can indeed

be used for abstraction based model checking and follows easily from Lemma 6
and the discussion above. In simple words, it says that the result of checking a
formula in the abstract system agrees with the one for the finer system, unless
it was indefinite.

Theorem 4. Let s and s′ be two states of an AMC M with s � s′. Then for all
ϕ ∈ PCTL:

[[s′, ϕ]] �= ? implies [[s, ϕ]] = [[s′, ϕ]].

Observe that the 3-valued PCTL semantics of an MC understood as an AMC
coincides with the usual 2-valued PCTL semantics for Markov chains.

5 Model Checking 3-Valued PCTL

In this section, we discuss two model checking algorithms for 3-valued PCTL.
As for CTL, both model checking algorithms work bottom-up the parse tree
of ϕ. Hence, it suffices to describe their steps inductively on the structure of
ϕ. Each state s is labeled with a function ts assigning to each subformula its
truth value. ts is defined directly for true, false, a, ϕ1 ∧ ϕ2, and ¬ϕ1 accord-
ing to the definition of their semantics. For [Φ]��p, ts can easily be determined,
provided the lower bound of a measure of paths for some path property (de-
noted by Prl in Figure 4) can be computed. Therefore, it remains to show
how to compute the lower bound of the measure of paths for which an un-
til or next-step formula evaluates to �, ⊥, and ?. Let us discuss Φ := ϕ1 U
ϕ2. The treatment of the next-step operator is similar but easier and is omit-
ted here. Thanks to Theorem 2, computing the measure for an until prop-
erty becomes (technically) easy, since only extreme distributions have to be
considered.

Reduction to MDP Model Checking. The first idea is to convert an AMC M to
an MDP MDP(M) and reuse existing methods for computing path properties on
MDPs. Before translating M , we can assume that for every state, we know the
truth values of ϕ1 and ϕ2. We annotate MDP(M) with (two-valued) propositions
corresponding to the values of ϕ1 and ϕ2 in M . More specifically, label a state s of
MDP(M) by the (new) propositions aϕ1

and aϕ2
, if ϕ1 respectively ϕ2 evaluates

to � in s. Label s by propositions āϕ1
and āϕ2

, if ϕ1 respectively ϕ2 are ⊥. Now,
considering the semantics of the until operation as shown in Figure 4, it is easy
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to see that ϕ1 U ϕ2 on a path of M evaluates to � iff aϕ1
U aϕ2

on the same
path (of MDP(M)) evaluates to true. Similarly, it is easy to see that ϕ1 U ϕ2
on a path of M evaluates to ⊥ iff ¬(¬āϕ1

U ¬āϕ2
) evaluates to true.

Using the reduction to an MDP model checking problem for until properties,
we have completed the first algorithm that is mainly used to give an upper bound
on the complexity of the model checking problem.

Complexity. Computing the semantics for an AMC M and a formula ϕ ∈ PCTL
bottom-up for every state can be done in linear time, provided the measures for
path properties are given. For every state s with k outgoing transitions, one can
obtain, in the worst case, k! extreme distributions. Thus, the size of MDP(M) is
at most exponential in the size of M , where, as expected, the size of M , denoted
by |M | is the number of states plus the number of transitions, i.e., pairs (s, s′) for
which P l(s, s′) > 0. Computing the measure for a path property in an MDP M ′

is polynomial with respect to the size of M ′ (states plus non-zero transitions) [7].
Thus, overall, we get:

Theorem 5. Given an AMC M = (S, P l, Pu, L) and a PCTL formula ϕ, then
the algorithm outlined in this section labels every state s ∈ S with ts(ψ) = [[s, ψ]]
for each subformula ψ of ϕ in time polynomial w.r.t. O(2|M| log |M|) and linear
w.r.t. the size of ϕ, where |M | denotes the size of M .

Fixpoint Computation. The reduction to an MDP for computing path properties
suffers from the effort spent for computing all extreme distributions. Therefore,
we have implemented a version of the algorithm that is based on fixpoint itera-
tion. This algorithm, while (only) approximating the minimal result in question,
chooses (and computes) extreme distributions in an on-the-fly fashion, leading
to huge space gains.

Our approach is inspired by the treatment in [1, 5] done for MDPs. Let us
define the sets:

W+
� = {s | ts(ϕ2) = �}

W−
� = {s | ts(ϕ2) �= � and ts(ϕ1) �= �}

W+
⊥ = {s | ts(ϕ2) = ⊥ and ts(ϕ1) = ⊥}

W−
⊥ = {s | ts(ϕ2) �= ⊥}

To simplify our presentation, we say that Φ evaluates in a state to some value
in B3 if it evaluates to that value on all paths starting in this state.

Φ holds in W+
� for sure and is violated for sure in W−

� . However, the result
is ⊥ in W+

⊥ since ϕ1 as well as ϕ2 is ⊥. In W−
⊥ the formula is not necessarily

violated.
Let pmin

α abbreviate (Prl(s, Φ, α))s∈S . We obtain pmin
α as least fixpoint of

the iteration described in the following:
First, let Del be the set of all pairs of delimited pseudo distribution functions

on S and b ∈ {l, u}. Consider the minimization/maximization function ξb :
2S × Del × (S → [0, 1]) → [0, 1] that is given by ξb(∅, (gl, gu), x) = 0 and for
S′ �= ∅
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ξl(S′, (gl, gu), x) = gl(sl) · x(sl) + ξl(S′ \ {sl}, cut(gl, gu[sl �→ gl(sl)]), x)

if x(sl) = mins′∈S′ x(s′),

ξu(S′, (gl, gu), x) = gu(su) · x(su) + ξu(S′ \ {su}, cut(gl[su �→ gu(su)], gu), x)

if x(su) = maxs′∈S′ x(s′).

Note that ξb(S, (gl, gu), x) sorts the states s ∈ S′ according to their values in x
and chooses h ∈ distr(g) that minimizes/ maximizes the value

∑
s∈S h(s) ·x(s).5

Let S+, S− ⊆ S. We use ξb to define the function Fb
(S−,S+) : (S → [0, 1]) →

(S → [0, 1]) that determines the next iteration step by

Fb
(S−,S+)(x)(s) =

⎧⎨⎩
1 if s ∈ S+,
0 if s ∈ S−,
ξb(S, (P l(s, ·), Pu(s, ·)), x) otherwise.

Furthermore, let x0 denote the function that maps everything to 0.

Theorem 6. The least fixpoint (w.r.t. point wise extension of the order of the
real numbers) of the function Fb

(S−,S+) can be used to calculate the values pmin
α :

pmin
� (s) = (�n∈INFl

(W −
� ,W+

� )
(n)(x0))(s)

pmin
⊥ (s) = 1 − (�n∈INFu

(W+

⊥ ,W −
⊥ )

(n)(x0))(s).

The proof goes along the lines of the proof for MDPs (see [1, Chapter 3] for
details).

Let us give an example showing that the cut in the definition of the fix-
point operator in Theorem 6 to calculate the probabilities for [Φ]��p is indeed
important:

Example 3. Let us consider the AMC shown in Figure 3 (a) (page 76) and
Φ = ϕ1 U ϕ2. Assume that ts(ϕ1) = tv2

(ϕ1) = tu(ϕ2) = � and all remain-
ing truth values for ϕ1 and ϕ2 are ⊥. Furthermore, assume that there is a
[1, 1]-transition from v2 back to itself. Then we get: W+

� = {u} and W−
� = {v1}.

For example, the maximization function ξu chooses P l(s, u) = Pu(s, u) = 3
4

since 1 = max{1, 0, 0} = max{x(u), x(v1), x(v2)} after the first iteration step
and due to the cut operation P (s, v1) = [14 , 1

4 ] and P (s, v2) = [0, 0]. Hence,
Pru(s, Φ,�) = 3

4 · 1 + 1
4 · 0 + 0 · 0 = 3

4 . W+
⊥ = {v1, v2} and W−

⊥ = {u}. Alto-
gether we get Pr(s, Φ,�) = [12 , 3

4 ], Pr(s, Φ,⊥) = [14 , 1
2 ], Pr(s, Φ, ?) = [0, 0]. Note

that we get the intervals shown in Figure 3 (c). Thus, the subsequent cut in the
definition of the fixpoint operator is necessary since the values in Figure 3 (b)
yield less precise results.
5 The function ξb is well defined, i.e., the same value is obtained if another maxi-

mal/minimal state s′ is considered. This follows from the fact that min{
s∈S′ h(s) |

h ∈ distr(g)} = min{
s∈S′ h(s) | h ∈ distr(cut(gl, gu[s′ �→ gl(s′)]))} for all S′ ⊆ S

with s′ ∈ S′.
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6 Alternatives to AMCs

Let us discuss alternative approaches for abstraction of Markov chains. For rea-
sons of space limitation, we keep the discussion informal.

Generally, Markov Decision Processes (MDPs) are considered to be abstrac-
tions for Markov chains. MDPs extend the model of MCs by allowing several
distribution functions in each state (see Figure 5 (c)).

Thus, when merging states to obtain an abstraction, one could define the
corresponding distribution functions, as indicated in Figure 5 (a)–(c). Hence,
the result would be an MDP. Now, one might be tempted to use existing model
checking theory for PCTL and MDPs to reason about the underlying Markov
chain. However, this is not possible since, as far as we know, there is no 3-valued
notion of PCTL for MDPs (not to mention, we need one that suits the role in
the abstraction defined here).

When interested in reachability properties, the approach is possible and was
pursued in [6]. Let us call the approach AMDP. Actually, the model checking
algorithms presented in the previous section considers the AMC as an MDP
with extreme distributions, but only when computing the minimal probabilities
of path properties.

Of course, one could have developed such a 3-valued version of PCTL for
MDPs as opposed for AMCs, as done here. But actually, the 3-valued PCTL
semantics given in Section 4 can easily be taken over for such a 3-valued PCTL
semantics for MDPs.

However, there is an intrinsic difference in the approach using AMCs and
the one based on MDPs. An MDP can easily be abstracted to an AMC. For
example, for the MDP shown in Figure 5 (c), we would get the AMC shown in
Figure 5 (d). But using intervals, one reduces more information.

This has two implications, one theoretical and one practical. Our semantics
for PCTL path properties compares only extreme distributions. Probabilities
that are not the bound of some transition probability interval are not considered.
However, we might consider all extreme distributions. For example, one extreme
distribution for the AMC in Figure 5 (d) is (u �→ 4

10 , v1 �→ 2
10 , w �→ 3

10 , v2 �→ 1
10 ),

which is not present in Figure 5 (c). Now, consider ϕ = [X(au ∨ aw)]≤ 6
10

, where
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Fig. 5. Abstraction by MDPs vs. AMCs
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proposition au (aw) is � in state u (respectively w) and ⊥ in all other states.
Then the macro state in Figure 5 (c) provides � for ϕ but for the AMC in Fig-
ure 5 (d) the result is ?. Thus, our results might sometimes be less precise. From
the practical side, using MDPs, one reduces the number of states but basically
all distributions are kept. But storing all distributions causes no memory savings
and it is questionable whether such an abstraction does indeed satisfy practical
needs. In our approach, on the other hand, if, for example, a third distribution
denoted by σ3 with (u �→ 2

10 , v1 �→ 2
10 , w �→ 3

10 , v2 �→ 3
10 ) would be present in

Figure 5 (c), we obtain the same AMC, thus, reducing the memory requirments.
A different approach was taken in [11]. There, criterias have been engineered

that guarantee an abstraction to be optimal (in some sense). Let us call this
approach O. While, of course, such an optimal abstraction sounds preferable, it
turns out that neither AMCs nor MDPs carry enough information to be opti-
mal. In simple words, the approach loses some of its elegance since it requires
to store much information. Furthermore, it is not clear (to us) how to obtain
this information without constructing the underlying Markov chain. The author
of [11] therefore suggests as well a more simple approximation of the optimal
abstraction, which we call S. In simple words, S is similar to AMCs but does not
use the cut operator to optimize the information present in AMCs.

Let us discuss Example 15 of [11]: Consider Figure 6 and Φ = [X¬au1
]>0

where au1
is true in u1 and false in all other states. For the approach S the result

in u0 is ? because the sum of the two zero values of the lower bounds to the direct
successors ud and u0 are added which yields 0 + 0 = 0 (see [11, Example 15]).
In our setting after the first chosen zero value, say P l(u0, ud) = Pu(u0, ud) = 0
through the cut the next choice is P l(u0, u0) = 1 − 0.01 = 0.99. The resulting
extrem distribution is (ud �→ 0, u0 �→ 0.99, u1 �→ 0.01) which leads to [[u0, Φ]] = �.
Thus, results based on S are less precise than the results obtained with our
method. In terms of memory, S and AMC are comparable, provided the fixpoint
computation method is used. Note that [11] does not address the question of
model checking.

Summarizing, with abstraction one loses information usually by reducing
space requirements. All approaches have in common, that states are grouped
together to form an abstract system. They differ in the information that is kept
for transitions. By means of precision, we can order the approaches S < AMC <
AMDP < O, where a < b means that a is less precise than b, when for some
concrete system, the same states are grouped together. In terms of memory

u0

u1

ud

[0, 0.99]

[1, 1]

[0.5, 0.64]
[0, 0.01]

[0.36, 0.5]

[0, 1]

Fig. 6.
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usage, we can order the approaches as S = AMC < AMDP < O, where a < b
means that a consumes less memory than b, when for some concrete system, the
same states are grouped together.

7 Conclusion

In this paper, we have extended the abstraction-refinement paradigm based on
three-valued logics to the setting of probabilistic systems. We have given a notion
of abstraction for Markov chains. In simple words, abstract Markov chains are
transition systems where the edges are labeled with intervals of probabilities.
We equipped the notion with the concept of simulation to be able to relate the
behavior of abstract and concrete systems.

We have presented model checking for abstract probabilistic systems (i.e.
abstract Markov chains) with respect to specifications in a probabilistic temporal
logic, interpreted over a 3-valued domain. More specifically, we studied a 3-
valued version of PCTL. The model checking algorithm turns out to be quite
similar to the ones developed in the setting of checking PCTL specifications of
Markov decision processes. Thus, using the intuitive concept of intervals allows
to refrain from saving all probability distributions present in concrete systems
but storing only boundaries, while allowing to adapt existing theory of model
checking probabilistic systems.

Our work can be extended into several directions. First, further insight in
which and how to split states is desirable, when the model checking result is
indefinite. It would also be interesting to extend our setting towards the more
expressive logic PCTL∗ or to the setting of continuous-time Markov chains.
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Symbolic Model Checking of Stochastic Systems:
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Abstract. This paper presents IM-SPDL, a stochastic extension of the
modal logic PDL, which supports the specification of complex perfor-
mance and dependability requirements. The logic is interpreted over
extended stochastic labelled transition systems (ESLTS), i.e. transition
systems containing both immediate and Markovian transitions. We de-
fine the syntax and semantics of the new logic and show that IM-SPDL
provides powerful means to specify path-based properties with timing
restrictions. In general, paths can be characterised by regular expres-
sions, also called programs, where the executability of a program may
depend on the validity of test formulae. For the model checking of IM-
SPDL time-bounded path formulae, a deterministic program automaton
is constructed from the requirement. Afterwards the product transition
system between this automaton and the ESLTS is built and subsequently
transformed into a continuous time Markov Chain (CTMC) on which nu-
merical analysis is performed. Empirical results given in the paper show
that model checking IM-SPDL can be realised efficiently in practice.

Keywords: Stochastic systems, performance and dependability analysis,
symbolic model checking, model checking software.

1 Introduction

It is extremely important to develop techniques for constructing and analysing
distributed, concurrent hard- and software systems, which have become part
of our daily life. Such systems must work correctly and meet high performance
and dependability requirements. Our approach to the combined analysis of func-
tional, performance and dependability aspects (the latter two commonly known
as performability) is based on the formal verification of a stochastic model which
describes both functional and temporal aspects of behaviour.

Such models can be constructed with the help of high-level formalisms, where
stochastic Petri nets and stochastic process algebras are among the most popular
ones. Generalised stochastic Petri nets (GSPNs) [1] offer two types of transitions:
Timed transitions, associated with an exponentially distributed delay, and imme-
diate transitions which, once enabled, fire without delay. Immediate transitions
have been shown to be very useful for the modelling of complex synchronisation
or cooperation schemes, for representing probabilistic decisions or simply for
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modelling bookkeeping activities which consume only negligible time. For this
reason, immediate activities are also an integral part of the Stochastic Activity
Network (SAN) modelling formalism [25] as implemented in the Möbius mod-
elling framework [10] for the modelling and analysis of performability properties
of distributed systems. For similar reasons, immediate transitions have also been
included, in the form of immediate actions, into several stochastic process alge-
bras, such as TIPP [13], EMPA [8] and IMC [12]. Overall, one may say that
immediate transitions are a very valuable and often used modelling feature.

While there has been substantial work on the model checking of stochastic
systems, the aspect of immediate transitions has not been considered in this con-
text. In this paper, we present an extension of the modal logic PDL [11], called
IM-SPDL (immediate and Markovian stochastic PDL), which can be used for
specifying requirements for models that contain both immediate and Markovian
transitions. Such a model we call extended stochastic labelled transition system
(ESLTS), since it has two types of transitions and carries action labels as well as
state labels. As the paper shall explain, IM-SPDL is a very powerful logic in that
it allows its user to specify requirements which are based on the probability mea-
sure of sets of execution paths, where regular expressions of actions and so-called
tests are used to characterise the set of satisfying paths. The model checking of
IM-SPDL time-bounded path formulae follows an automaton-based approach:
From the requirement, a deterministic program automaton is constructed, and
subsequently the product transition system between this automaton and the
ESLTS is built and thereafter transformed into a continuous time Markov Chain
(CTMC) on which numerical analysis is performed.

Related Work. In recent years, many efforts have been made to devise tem-
poral logics for the specification of system properties in the area of performance
analysis, where the underlying model is a labelled Markov chain. One result of
these efforts is the logic CSL (continuous stochastic logic) [6], introduced by [3]
and extended in [7] with an operator to reason about steady-state behaviour.
CSL allows the specification of certain types of performability measures (cf. [5]),
but the specification of these measures is completely state-oriented, i.e. based
on atomic propositions. In [15] an action-based variant of CSL, called aCSL,
was proposed, which is not based on atomic propositions but on sequences of
named actions and therefore more suitable for action-oriented formalisms such as
process algebras. In [14] it was shown how to employ the logic aCSL for performa-
bility modelling. A first combination of the state-oriented and action-oriented
approach was the logic aCSL+ [22], where regular expressions of actions are used
to characterise satisfying paths. In [18] we presented the first ideas of a stochas-
tic extension of the logic PDL (SPDL) which also combines state-oriented and
action-oriented features, and where paths can be specified via regular expressions
of actions and so-called tests. The logic asCSL [4], inspired by the path-based
reward variables of [23], follows a similar motivation. However, we emphasise the
fact that the model to be checked by all logics mentioned in this paragraph is a
labelled CTMC which is not allowed to contain immediate transitions.
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arrived
n

waitrt

packets n

n

waitcorerror

ARR, λ

ARR, μ CO, γ

RT, κ

PRC, ω

c, p

nc, (1 − p)

Fig. 1. GSPN-style model of a fault-tolerant packet collector

Organisation of the Paper. This paper is organised as follows: In Sec. 2,
we introduce ESLTS, the class of models which we consider. Sec. 3 defines the
syntax and semantics of the new logics IM-SPDL. In Sec. 4, we show how model
checking of IM-SPDL path formulae can be carried out, by constructing a prod-
uct transition system on which numerical analysis is performed. Sec. 5 presents
some empirical results obtained from a prototype implementation. Finally, in
Sec. 6 we summarise the results and give pointers to future research.

Example 1 (Running example: Fault-tolerant packet collector). Throughout this
paper, we use the example of a fault-tolerant packet collector. Fig. 1 shows the
GSPN-style specification of this simple system which has the following repeating
behaviour: n data packets arrive independently, are stored, and then all n data
packets are jointly processed. Arrivals can either be error-free (upper transition
ARR, rate λ) or erroneous (lower transition ARR, rate μ). Rather unusual for
GSPNs, there are two timed transitions bearing the same name, ARR, which
expresses the fact that these transitions are not distinguishable by an observer.
If a data packet contains an error, this error can be correctable (immediate tran-
sition c) with a certain probability p, or non-correctable (immediate transition
nc) with the complementary probability. In the case of a correctable error, the
error is corrected (transition CO) and more data packets can be received. If
the error is non-correctable, the data packet has to be retransmitted (transition
RT ). During the processing of an erroneous packet, no new packet can arrive,
which is modelled by the inhibitor arcs from places error, waitcor, and waitrt
to the ARR transitions of the model. �

2 Model: Extended Stochastic Labelled Transition
Systems

The model of the logic IM-SPDL is an extended stochastic labelled transition sys-
tem (ESLTS). An ESLTS has two types of transitions, immediate and Markovian
transitions. Immediate transitions are untimed transitions, whereas Markovian
transitions are associated with an exponentially distributed delay.
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Definition 1 (Extended Stochastic Labelled Transition System). An ex-
tended stochastic labelled transition system (ESLTS) is a quintuple
M := (S, L, RI , RM , s), where:

– S is a finite set of states.
– L : S �→ 2AP is the state labelling function that associates with every state

s ∈ S the set of atomic propositions which hold in that state. AP is the set
of atomic propositions.

– RI : S×ActI ×IP ×S is the immediate transition relation, where IP = (0, 1].
If (s, a, p, s′) ∈ RI , we write s

a,p
-------➤ s′. ActI is a finite set of immediate

action labels, i.e. actions, that are associated with immediate transitions,
and p ∈ IP is a probability. The probabilities associated with the immediate
transitions leaving a particular state must sum up to 1 (provided that the
state has at least one emanating immediate transition).

– RM : S × ActM × IR × S is the Markovian transition relation. ActM is a
finite set of Markovian action labels, i.e. actions, that are associated with
Markovian transitions. We require that ActI∩ActM = ∅. If (s, a, λ, s′) ∈ RM ,

we write s
a,λ−−→ s′.

– s ∈ S is the unique initial state of M.

Example 2 (ESLTS of packet collector). In Fig. 2, the ESLTS M for the packet
collector GSPN from Fig. 1 is shown, where we assume that the number n of
data packets that are to be processed is equal to four.

c, p c, p c, p c, p

nc, 1−pnc, 1−p nc, 1−p nc, 1−p

s1 s2 s3 s4 s5

s6 s7 s8 s9

s10 s11 s12 s13

s14 s15 s16 s17

ARR, λ ARR, λARR, λARR, λ

ARR, μARR, μARR, μARR, μ

CO, γCO, γ CO, γ CO, γ

RT, κ RT, κ RT, κ RT, κ

PRC, ω

Fig. 2. ESLTS of the GSPN model for n = 4

The system has the following state labels:

L(s5) = {full}, L(s6) = ... = L(s9) = {error},
L(s10) = .... = L(s13) = {waitrt}, L(s14) = ... = L(s17) = {waitcor}

The sets of immediate and Markovian actions are given as follows:

ActI := {nc, c}, ActM := {ARR, RT, CO, PRC}



Symbolic Model Checking of Stochastic Systems 93

For example, transitions s6
nc,1−p

------------➤ s10 and s6
c,p

-------➤ s14 are immediate,
whereas s1

ARR,λ−−−−→ s2 and s14
CO,γ−−−→ s2 are Markovian transitions. �

Since an ESLTS may have two types of transitions, there are two types of states,
vanishing and tangible states.

Definition 2 (Vanishing and tangible states). A state of an ESLTS is called
vanishing if it possesses at least one outgoing immediate transition. Otherwise
the state is called tangible.

A vanishing state is left as soon as it is entered, i.e. its sojourn time is zero. A
tangible state has at least one outgoing Markovian, but no immediate transition
(unless it is absorbing), therefore its sojourn time is governed by an exponen-
tial distribution whose rate parameter λ equals the sum of all the rates of the
Markovian transitions emanating from that state. In the context of compositional
modelling formalisms, such as stochastic process algebras, a further refinement
of the notions of tangible/vanishing states is possible [26]. However, as our model
checking approach is independent of any high-level modelling formalism, as long
as the model to be checked is a single ESLTS which is considered in isolation, it
suffices to distinguish between vanishing and tangible states.

Example 3. In Fig. 2 states s6, s7, s8, and s9 are vanishing, the remaining states
are tangible. �

For the semantics of the logic IM-SPDL, the following notion of a path is of
great importance:

Definition 3 (Paths in M). An infinite path σ of an ESLTS M is a sequence
of transitions of the form s0

a0,t0−→ s1
a1,t1−→ s2 . . . where:

– ti = τ(σ, i) ∈ IR≥0 is the real-valued sojourn time in si before passing to
si+1.

– if ai ∈ ActM , then ∃λ : (si, ai, λ, si+1) ∈ RM and ti > 0 is the sojourn time
in state si (i.e. ti is the value drawn from an exponential distribution).

– if ai ∈ ActI , then ∃p : (si, ai, p, si+1) ∈ RI and ti = 0 is the sojourn time in
state si.

– σ[i] is the (i + 1)st state on path σ.
– σ@t is the state at time point t.
– a[i] is the (i + 1)st action on path σ.

A finite path σ is a finite sequence of transitions of the form: s0
a0,t0−→ s1

a1,t1−→
s2 . . . sn−1

an−1,tn−1−→ sn, where sn is an absorbing state. For a finite path, τ(σ, i)
is defined for i < n as for infinite paths, and for i = n we define τ(σ, i) = ∞.
The set PATHM(s) := {σ

∣∣σ[0] = s} is the set of all finite or infinite paths with
initial state s.
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3 Syntax and Semantics of IM-SPDL

The logic IM-SPDL is a stochastic extension of PDL [11], a multi-modal pro-
gram logic. Beside the standard ingredients such as propositional logic and the
modal �-operator (“possibly”), PDL enriches the �-operator with so-called reg-
ular programs which are basically regular expressions of actions and tests (cf.
Def. 5 below). If Φ and Ψ are PDL formulae and ρ is a program, then Φ ∨ Ψ ,
¬Φ and

〈
ρ
〉
Ψ are formulae.

〈
ρ
〉
Ψ means that it is possible to execute program

ρ, thereby ending up in a state that satisfies Ψ .
With respect to PDL we have added the following operators to obtain IM-

SPDL: A path operator that extends the original PDL
〈
.
〉
-operator by specifying

time bounds within which the Ψ state has to be reached, a probabilistic path
quantifier P��p to reason about the transient probabilistic behaviour of a system,
and a steady-state operator S��p to reason about the behaviour of the system
once stationarity of the underlying Markov chain is reached.

3.1 Syntax of IM-SPDL

The formulae of IM-SPDL are formally defined as follows:

Definition 4 (Syntax of IM-SPDL). Let p ∈ [0, 1] be a probability and
q ∈ AP an atomic proposition and 	
∈ {≤, <,≥, >} a comparison operator.
The state formulae Φ of SPDL are defined as follows:

Φ := q
∣∣Φ ∨ Φ

∣∣¬Φ
∣∣S��p(Φ)

∣∣P��p(φ)
∣∣(Φ)

Path formulae φ are defined by:

φ := Φ[ρ]IΦ

where Φ is a state formula as defined above, and I is the closed time interval
[t, t′] of the real axis. The symbol ρ represents a program as defined by Def. 5.

Definition 5 (Programs). Let Act = ActI ∪ ActM be a set of actions, which
are also called atomic programs, and TEST be a set of IM-SPDL state formulae.
A program ρ is defined by the following grammar:

ρ := ε
∣∣Φ?; a

∣∣ρ; ρ
∣∣ρ ∪ ρ

∣∣ρ∗∣∣Φ?; ρ
∣∣(ρ)

where ε �∈ Act is the empty program, a ∈ Act and Φ ∈ TEST.

The operators ; (sequential composition), ∪ (choice), and ∗ (Kleene star) have
their usual meaning. The operator Φ?; ρ (resp. Φ?; a) is the so-called test operator
(also called guard operator). Its informal semantics is as follows: Test whether Φ
holds in the current state of the model. If this is the case, then execute program
ρ, otherwise ρ is not executable. Def. 5 requires that every atomic program is
preceded by a test formula Φ, but this can be the trivial test (i.e. Φ = true).
From standard automata theory it is known that regular expressions coincide
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with regular languages, i.e. sets of words that are generated according to the
rules of regular expressions. Programs as defined in Def. 5 can be seen as regular
expressions over the alphabet Σ = TEST × (Act ∪ ε). Words that are generated
from programs in IM-SPDL will be referred to as program instances. The set of
these program instances is called, as before, a language.

The length of a program instance r, denoted by
∣∣r∣∣, is the number of elements

from Σ occuring in it. For 0 ≤ i <
∣∣r∣∣, r[i] is the (i + 1)st element of r. TF (r[i])

denotes the test formula part of r[i], and Act(r[i]) denotes the action part of r[i].

Example 4 (Programs and program instances). Let Act = ActI∪ActM as in Ex. 2
be the set of atomic programs, and TEST = {error, full, ...,¬error,¬full, ...} the
set of test formulae. Using the grammar from Def. 5, possible programs are1

ρ1 = ARR; (¬error?; ARR)∗; c; CO; ARR∗ and
ρ2 = (¬full?; ARR); c; CO; (full?; ε).

Some program instances of ρ1 are:

q = ARR; c; CO; ARR; ARR,
r = ARR; (¬error?; ARR); c; CO and
s = ARR; (¬error?; ARR); (¬error?; ARR); c; CO; ARR.

For r it holds that
∣∣r∣∣ = 4, Act(r[1]) = ARR and TF (r[1]) = ¬error. �

3.2 Semantics of IM-SPDL

Before we give the formal semantics of IM-SPDL, we provide an informal ex-
planation. The meaning of negation (¬Φ) and disjunction (Φ ∨ Ψ) is as usual.
S��p(Φ) asserts that the steady-state probability of the set of Φ-states, i.e. the
probability to reside in a Φ-state once the system has reached stationarity, satis-
fies the boundary as given by 	
 p. P��p(φ) asserts that the probability measure
of the paths that satisfy φ is within the bounds as given by 	
 p. Path formula
Φ[ρ][t,t

′]Ψ means that a state that satisfies Ψ is reached within at least t but at
most t′ time units, and that all preceding states must satisfy Φ. Additionally,
the action sequence of the path to the Ψ state must correspond to the action
sequence of a word from the language Lρ (the language induced by program
ρ) and all test formulae that are part of program ρ must be satisfied by the
corresponding states on the path.

Definition 6 (State probabilities). The probability to be in state s′ at time
point t, provided that the system is in state s at time 0, is given by

πM(s, s′, t) = Pr{σ ∈ PATHM(s)
∣∣σ@t = s′}

The set of paths {σ ∈ PATHM(s)
∣∣σ@t = s′} is measurable (see [6]), and Pr

denotes this probability measure.
1 For better readability we often omit the trivial test formula, i.e. we write a instead

of (true?; a).
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The definition for steady-state probabilities is similar, taking into account that
steady-state means ‘on the long run’:

πM(s, s′) = limt→∞πM(s, s′, t)

These definitions can be extended to sets of states: For S′ ⊆ S:

πM(s, S′, t) :=
∑

s′∈S′
πM(s, s′, t) and πM(s, S′) :=

∑
s′∈S′

πM(s, s′).

We are now ready to give the formal semantics of IM-SPDL.

Definition 7 (Semantics of IM-SPDL). The semantics of state formulae is
defined as follows: M, s |= q ⇐⇒ q ∈ L(s)

M, s |= ¬Φ ⇐⇒ M, s �|= Φ

M, s |= (Φ ∨ Ψ) ⇐⇒ M, s |= Φ or M, s |= Ψ

M, s |= S��p(Φ) ⇐⇒ πM(s, Sat(Φ)) 	
 p

M, s |= P��p(φ) ⇐⇒ ProbM(s, φ) 	
 p

Sat(Φ) is the set of states that satisfy Φ, and ProbM(s, φ) is the probability
measure of all paths σ ∈ PATH(s) that satisfy φ:

ProbM(s, φ) := Pr{σ ∈ PATHM(s)
∣∣M, σ |= φ}

For the semantics of path formulae we have to relate the instances of the program
ρ to words on paths in the ESLTS M.

Definition 8 (Words on paths). The word Wk of length k ≥ 0 on a path
σ ∈ PATHM is defined as follows:

W0(σ) := ε

Wk(σ) := Wk−1(σ) ◦ a[k − 1]

where a[k − 1] ∈ ActM ∧ σ[k − 1]
a[k−1],tk−1−−−−−−−→ σ[k] or

a[k − 1] ∈ ActI ∧ σ[k − 1]
a[k−1],0−−−−−→ σ[k].

For i = 0, 1, . . . , k − 1, Wk(σ)[i] denotes the i + 1st action on path σ.

Example 5. Consider a path σ := s1
ARR,t1−−−−−→ s6

c,0−−→ s14
CO,t2−−−−→ s2

ARR,t3−−−−−→ . . .
of the ESLTS from Fig. 2. The word of length 2 induced by σ is (ARR, c), the
word of length 4 is (ARR, c, CO, ARR) and W4(σ)[2] = CO. �

Definition 9 (Semantics of path formulae). The semantics of path formulae
is defined as follows:

M, σ |= Φ[ρ][t,t
′]Ψ ⇐⇒ ∃k

(
M, σ[k] |= Ψ ∧ ∀0 ≤ i < k(M, σ[i] |= Φ)

∧ time restriction

∧ program matching
)
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The first line states that there must be a state σ[k] that satisfies Ψ and that
all preceding states must satisfy Φ. The formula time restriction is defined as
follows:

time restriction :=

(1)
(
(t = 0 ∧

k−1∑
i=0

ti ≤ t′) ∨

(2)
(
t �= 0 ∧ ((t ≤

k−1∑
i=0

ti ≤ t′) ∨ (
k−1∑
i=0

ti < t ∧
k∑

i=0

ti > t ∧ σ[k] |= Φ))
)

It expresses the restrictions stemming from the time bounds that are imposed
on paths. In line (1), if the lower time bound is zero, then the only requirement
is to reach a Ψ -state before more than t′ time units have passed. Line (2) covers
the case where the lower time bound is greater than zero. In this case, either the
entry time into state σ[k] must lie within the interval [t, t′], or if the entry time is
less than t, then the sojourn time in σ[k] plus the sojourn times in the previous
states must be greater than t. The formula program matching is defined as
follows:

program matching :=
(1)

(
∃r ∈ L(ρ) ∧

∣∣r∣∣ = k ∧ Act(r[k − 1]) �= ε ∧
∀0 ≤ i ≤ k − 1(Act(r[i]) = W(k)(σ)[i] ∧M, σ[i] |= TF (r[i]))

)
∨

(2)
(
∃r ∈ L(ρ) ∧

∣∣r∣∣ = k + 1 ∧ Act(r[k]) = ε ∧ σ[k] |= TF (r[k]) ∧
∀0 ≤ i ≤ k − 1(Act(r[i]) = W(k)(σ)[i] ∧M, σ[i] |= TF (r[i]))

)
This formula expresses that the word induced on path σ must be matched by the
corresponding action parts of a program instance r and that the tests appearing
in the program must be satisfied by the appropriate states on the path. There
are two possibilities, as indicated in the formula: (1) If the last element of r is
of the form Φ?; a, where a �= ε, the corresponding state must satisfy the test
formula and the last transition on the path must have a label identical to the
action part of r[k − 1]. (2) If the last element of r is of the form Φ?; ε, i.e. has
an empty action part, then it only has to be checked whether the corresponding
state on the path satisfies the test formula.

Example 6 (IM-SPDL formulae). With respect to the ESLTS M of Fig. 2 we
specify four example requirements:

– Is the probability to receive four data packets with at most one packet con-
taining a non-correctable error within 5 time units greater than 0.9?

Φ1 := P>0.9(¬full [ARR∗; nc; RT ; ARR∗ ∪ ARR∗][0,5] full)

– Is the probability to reach a state in which the buffer is full with a single
arrival greater than zero?

Φ2 := P>0(¬full [ARR][0,∞] full)

Requirement Φ2 characterises state s4.
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– Is the probability that the buffer is full after at most 7.3 time units greater
than 75 percent, if the following side conditions must be met: The only
packet that contains an error is the fourth packet. This error must be cor-
rectable.

Φ3 := P>0.75(true [ARR∗; (Φ2?; ARR); c; CO][0,7.3] true)

– In steady-state, is the probability that the system is currently processing
either a correctable or a non-correctable error, less than 3%?

Φ4 := S<0.03(waitcor ∨ waitrt) �

4 Model Checking IM-SPDL

In this section, we describe the model checking algorithm for the logic IM-SPDL.
Central for this are the notions of program automata and product transition
systems which we introduce in the sequel. Due to restricted space we will only
describe the general idea of how to model check IM-SPDL path formulae, full
details can be found in [19].

4.1 General Idea

The overall model checking algorithm for IM-SPDL is similar to that of CTL in
the sense that we start by checking elementary subformulae and then proceed
to the checking of more and more complex subformulae until the overall formula
has been checked. Model checking propositional logic subformulae works as for
CTL. Steady-state subformulae are checked in three steps as follows:

1. The ESLTS M is transformed into a state-labelled CTMC M′, by eliminat-
ing the vanishing states, as described, for instance, in [2].

2. On M′, model checking the steady-state operator works as for CSL [6]. Step
2 yields the verification results for the tangible states only.

3. During step 1, for each vanishing state the probability to reach a certain
tangible state as the next tangible state is recorded. These probabilities are
now combined with the results of step 2 in order to obtain the verification
results for the vanishing states.

The basic model checking procedure for IM-SPDL path formulae with leading
P��p operator is more involved: We assume that we want to check whether state
s of a given ESLTS M satisfies the formula P��p(φ), where φ = Φ[ρ][t,t

′]Ψ . The
basic idea is to reduce the IM-SPDL model checking problem M, s |= P��p(φ) to
the CSL model checking problem of deciding whether M∗, s∗ |= P��p(F[t,t′]succ)
for a CTMC M∗ (to be constructed) and a state s∗ of M∗. A path satisfies
the CSL path formula F[t,t′]succ, if within the time interval [t, t′] a state is
reached that satisfies the new atomic proposition succ. We take the following
steps:
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1. From the program ρ we derive a deterministic program automaton Aρ, which
is a variant of deterministic finite automata.

2. Using the given ESLTS M and the program automaton Aρ, we construct
a product ESLTS (PESLTS) M×. The state space of M× is the product
between M and Aρ, i.e. states are of the form (si, zi), where si is a state
of M and zi a state of Aρ. In addition, M× contains an absorbing error
state with the new state label fail. The transitions in M× are labelled with
rates in the case of Markovian transitions and with probabilities in the case
of immediate transitions. The purpose of building this PESLTS is to check
whether φ = Φ[ρ][t,t

′]Ψ is functionally satisfiable in M or not.
3. In order to compute the probability measure of the paths satisfying φ we

proceed as follows:
(a) All states (si, zi) of M× for which si is a Ψ -state and zi is an accepting

state are replaced by a single absorbing goal state, with the special state
label succ (for “success”). All transitions leading to a state (sj , zj) of the
kind just described are redirected to this succ-state.

(b) The PESLTS M× is transformed into a CTMC M∗ by eliminating van-
ishing states as in [2].

4. On M∗ we can compute the probability measure of all paths satisfying the
CSL formula P��p(F[t,t′]succ), which is equivalent to the probability measure
of the paths satisfying the original formula P��p(φ) in the original model M.

4.2 Program Automata

According to Sec. 4.1 we have to derive an automaton from a given program ρ.
This is done by the following steps:

– At first, we construct from ρ a non-deterministic program automaton (NPA)
Nρ. The definition of NPA is identical to that of non-deterministic finite
automata as known from standard automata theory, albeit with special input
alphabet Σ as introduced above in Sec. 3.1.

– Secondly, we turn Nρ into a deterministic program automaton (DPA) Aρ.
DPAs are formally defined in Def. 10. From this definition, it follows that the
determinisation of an NPA is quite different from making a non-deterministic
finite automaton deterministic. We will exemplify and justify our approach
in example 7.

Definition 10 (Deterministic program automaton DPA). A DPA A is a
quintuple (ZA, ΣA, zStart, EA, δA) where

– ZA is a finite set of states,
– ΣA = TEST × (Act ∪ ε) is the input alphabet,
– zStart

A ∈ ZA is the initial state,
– EA ⊆ ZA is the set of accepting states and
– δA : ZA ×ΣA → ZA is the state transition function which has to satisfy the

following condition: If a state z possesses more than one outgoing transition
then, either the action parts of the labellings of all outgoing transitions must
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be pairwise different, or if there are two or more transitions whose action
parts are identical, then the test formula parts of them must not be true at
the same time.

Our model checking approach relies on the following theorem:

Theorem 1. For every NPA, an equivalent DPA can be constructed.

Although Theorem 1 seems quite obvious, it should be noted that its proof [16]
is not the same as the equivalence proof of deterministic and non-deterministic
finite automata from standard automata theory, since the input symbols have
both a test part and an action part, and during determinisation the semantics of
the test part must be taken into account. Instead of a formal proof of Theorem 1,
we consider the following illustrative example:

Example 7 (NPA and DPA). Fig. 3 shows a non-deterministic program automa-
ton Nρ for the program ρ = ARR∗; (Φ2?; ARR); c; CO (taken from Ex. 6, re-
quirement Φ3). The automaton is non-deterministic since the arcs emanating
from state A, labelled with ARR (which is equivalent to (true?; ARR)) and
(Φ2?; ARR), have identical action label and the test parts are not disjoint. We
cannot directly use such a non-deterministic automaton for our model checking
algorithm, as the product construction explained in Sec. 4.3 could modify the
stochastic behaviour of M and thus lead to wrong numerical results. Therefore
we first construct a deterministic program automaton Aρ, which is shown in
Fig 4. In Aρ, no two transitions are activated at the same time. This deter-
minisation guarantees that the product automaton will preserve the branching
structure and therefore the stochastic behaviour of M. �

A B DC
Φ2?; ARR

ARR

c CO

Fig. 3. Non-deterministic program automaton Nρ for the program of Φ3

A AB DC

Φ2?; ARR

Φ2?; ARR

¬Φ2?; ARR

¬Φ2?; ARR

c CO

Fig. 4. Deterministic program automaton Aρ for the program of Φ3

4.3 Product ESLTS Construction and Analysis

The central part of model checking probabilistic path formulae is the construc-
tion of the PESLTS of the model M and the DPA Aρ for the program ρ of the
path formula that is to be checked. In this section, we describe by means of an
example how this PESLTS is generated.
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1

λ

λλλ

μμμ

μ p

1 − p
ω

γ
(s1, A) (s2, A) (s3, A) (s4, A) (s9, AB) (s17, C) succ

(s6, A) (s7, A) (s8, A) (s5, AB)

fail

Fig. 5. Product ESLTS M×

Example 8 (Constructing the PESLTS). Let the ESLTS M from Fig. 2 and the
DPA Aρ, shown in Fig. 4, be given. We now explain by example, how their
PESLTS M×, shown in Fig. 5, is constructed:

– The combinations of the transitions s1
ARR,λ−−−−→ s2 in M and A

¬Φ2?;ARR−−−−−−−→ A

in Aρ leads to the transition (s1, A) λ−→ (s2, A) in M×.

– In M, transition s1
ARR,μ−−−−→ s6 is also possible, therefore M× also has the

transition (s1, A)
μ−→ (s6, A).

– Transition (s9, AB)
p

-----➤ (s17, C) in M× stems from the transition s9
c,p

-------➤

s17 in M and AB
c−→ C in Aρ.

– Transition (s6, A)
1

-----➤ fail is composed of the transitions s6
c,p

-------➤ s14 and

s6
nc,1−p

------------➤ s10 in M, since in state A neither a c nor an nc transition is
possible. Therefore in M× we obtain the transitions (s6, A)

p
-----➤ fail and

(s6, A)
1−p

--------➤ fail which can be replaced by a single immediate transition
that has probability one.

– In state C there is a transition C
CO−−→ D, where D is an accepting state,

and in M there is a transition s17
CO,γ−−−→ s5. In M× this leads to transition

(s17, C)
γ−→ succ, which stems from the fact that the automaton goal state D

is accepting and that the goal state s5 of the ESLTS satisfies Ψ = true, i.e.
state (s5, D) satisfies the conditions of Sec. 4.1, item 3(a). �

After the product ESLTS M× has been constructed, its vanishing states are
eliminated. We explain this elimination by means of the example:

Example 9 (Elimination of vanishing states). Let the PESLTS M× from Fig. 5
be given. The vanishing states (s6, A), (s7, A), (s8, A) and (s9, AB) are elimi-
nated, thereby redirecting their incoming arcs to the respective successor states2

and weighing them with the corresponding probabilities. This leads to the la-
belled CTMC M∗ shown in Fig. 6. �

2 In general, sequences and even cycles of immediate transitions are possible, which
situation can be handled by several published elimination algorithms.
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λ

λλλ

μμμ

ω μ · (1 − p)

μ · p γ
(s1, A) (s2, A) (s3, A) (s4, A) (s17, C) succ

(s5, AB)

fail

Fig. 6. M∗: Result of the elimination of vanishing states

4.4 Complexity

It is known that the time complexity of model checking CSL is linear in the
number of transitions of the model, the uniformisation rate (determined by the
largest exit rate of any state of the model), and the involved time bound [6].
For model checking IM-SPDL probabilistic path formulae, a product transition
system must be constructed first whose size, in the worst case, is the product
of the original model and the program automaton at hand. However, in spite
of this potential blow-up of the state space, in most practical cases (like the
ones in Sec. 5) the product transition system remains small (even smaller than
the original model), since the program automaton typically restricts the possible
behaviour of the original model and only the reachable portion of the product
transition system needs to be constructed.

5 Empirical Results

This section presents empirical results of model checking IM-SPDL requirements,
obtained with the help of the tool CASPA [20] which we have recently extended
by model checking features.

5.1 The Tool CASPA

In CASPA the system to be checked is specified with the help of a stochastic
process algebra (SPA) language, which is augmented by constructs for
describing performability requirements as well as classical performance and
dependability measures. Fig. 7 shows the building blocks of CASPA and their
interaction. CASPA is a fully symbolic model checker, i.e. it relies completely on
multi-terminal binary decision diagrams (MTBDDs), both for representing the
transition system and for implementing the verification algorithms. In our expe-
rience, MTBDDs are superior to explicit representations in that they enable the
compact storage of very large state spaces, where the symbolic representation of
the ESLTS from the SPA specification can be generated very efficiently [17]. The
use of MTBDDs thus enables the generation and storage of state spaces whose
sizes are prohibitive in the case of explicit storage schemes. Using extensions of
MTBDDs and efficient algorithms for numerical analysis, as implemented in the
tool PRISM [21], it is possible to analyse very large systems.
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satisfaction sets
− Computation of

Tool Driver

parse graphs

Symbolic 

Model Checking Engine

− Product MC generation
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Measure
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System 
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− MTBDD manipulation
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Fig. 7. Architecture of CASPA

5.2 Case Studies
Fault-Tolerant Packet Collector. We check the path-based requirements Φ1
and Φ3 from Ex. 6. Table 1 shows the model checking times3 for different values
of the model parameter n. Columns “States M∗” denote the number of states
of the final transition system M∗, obtained by eliminating the vanishing states
from the respective product transition system M×. For the model checking of
Φ1 and Φ3, most of the time is needed for generating the product ESLTS, since
the times for constructing the DPA and for eliminating the vanishing states were
found to be negligible.

For Φ1 the number of states for the PESLTS is about half the number of states
of the original model because the requirement states that either all packets should
be error-free or at most one packet may contain an incorrectable error. Likewise,
we observe that for Φ3 the number of states of the PESLTS is also smaller than
for the original model. This is due to the fact that we are only interested in the
paths that result from a single correctable error that occurs in the last packet to
be received. This restricts the number of states, as all other transitions not being
labelled with the appropriate actions in the respective states can be redirected
to a single absorbing error state.

According to Table 1, the numerical analysis (N.A.) times are small compared
to the generation times. However, model checking of Φ1 consumes more time than
that of Φ3 because the number of states of the PESLTS is larger for Φ1 (but the
construction times for both PESLTSs are roughly the same).

Kanban System. The Kanban manufacturing system was first described as a
generalised stochastic Petri net in [9]. We consider a Kanban system with four
3 All execution times are given in seconds, measured on a 3.0 GHz Pentium IV with

1GB of memory, running SuSe Linux 9.0.
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Table 1. Model checking statistics for fault-tolerant packet collector for Φ1 and Φ3

n: States: Φ1 Φ3

States M∗: Gen. Time: N.A. Time: States M∗: Gen. Time: N.A. Time:
5,000 20,001 10,002 1.69 0.32 5,003 1.80 0.11
15,000 60,001 30,002 6.09 1.08 15,003 6.70 0.32
30,000 120,001 60,002 13.72 2.20 30,003 14.59 0.68
50,000 200,001 100,002 25.88 3.57 50,003 28.12 1.16

cells, a single type of Kanban cards and the possibility that some workpieces
may need to be reworked (i.e. moved back to the same cell).

The Kanban system demonstrates the usefulness of symbolic data structures
for representing large state spaces. Table 2 gives the model statistics, where the
scaling parameter n denotes the number of Kanban cards. For n = 12 and a
reachable state space of more than 5.5 billion states only 32, 324 MTBDD nodes
are required. Generating the state space from the given SPA specification and
restricting it to its reachable portion takes only about 17 seconds in the case of
n = 12. Consider the following requirements (only textual definitions are given):

– Φ1: The probability, that within t time units a single workpiece needs exactly
three reworks, should be below p.

– Φ2: The requirement, that a job needs three reworks in the first cell and zero
reworks in the second cell within a given time bound, should be satisfied
with a probability of p?

– Φ3 : The steady-state probability that cell 3 or 4 is blocked, i.e. the maximum
number of Kanban cards is reached, should be below p.

From the results given in Table 3 we observe that for requirements Φ1 and Φ2
the state space of the PESLTS is dramatically smaller than that of the original
system, which stems from the fact that in both cases only very specific paths
in the system are of interest. The table also gives the generation time for the
PESLTS for Φ1 and Φ2 with varying n. For Φ3 the state space size is the same as
for the original model, since in the case of a steady-state requirement no PESLTS
has to be generated. For Φ1 and Φ2 the numerical analysis time is small compared
to the generation time (because the size of the PESLTS is very small). For Φ3

Table 2. Model statistics for the Kanban system

n: States: Transitions: Model Gen. Time: MTBDD Nodes:
5 2,546,432 2.446e+07 0.42 5,392
6 11,261,376 1.15709e+08 0.94 8,086
7 41,644,800 4.45046e+09 1.59 10,389
10 1,005,927,208 1.20322e+10 8.37 23,245
11 2,435,541,472 2.98062e+10 12.90 27,425
12 5,519,907,575 6.88839e+10 17.22 32,324
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Table 3. Model checking statistics for Kanban for Φ1 to Φ3

n: Φ1 Φ2 Φ3

States M∗: Gen. Time : N.A. Time: States M∗: Gen. Time: N.A. Time: Gen. Time: N.A. Time:
5 44 0.39 < 10−6 42 0.19 < 10−6 0.42 164
6 53 0.91 < 10−6 53 0.93 < 10−6 0.94 1093
7 62 1.71 < 10−6 54 1.91 < 10−6 1.59 75,600
10 89 7.76 0.01 108 7.71 0.03 8.37 –
11 98 12.88 0.03 119 11.46 0.04 12.90 –
12 107 16.03 0.05 130 17.89 0.09 17.22 –

Table 4. Model checking statistics for FTMCS for Φ

Config.: States: Φ

States M∗: Gen. Time: N.A. Time:
C1 753,664 4,098 0.06 0.02
C2 2,152 33 0.02 < 10−6

C3 889 11 0.01 < 10−6

C4 123,760 134 0.03 0.01

numerical analysis for the cases n ≥ 10 was not feasible (indicated by “–” in the
table), since the allocation of a solution vector in main memory for more than
one billion states is not possible on a common workstation, not to speak of the
solution time.

Fault-Tolerant Multi Computer System (FTMCS). This computer
system, originally described in [24], comes in different configurations, thereby
achieving different degrees of fault-tolerance (due to the replication of certain
components). For example, configuration C1 has three computers and three
memory modules of which at least one must be operational for the entire sys-
tem to be operational. Requirement Φ which we check here, a time-bounded
probabilistic path formula, describes a system failure which is only due to mem-
ory failures, no failures of other components shall contribute to this situation.
Table 4 shows that, for all considered configurations, the state space size of M∗

is very small compared to the size of the system, since only a very restricted
number of paths is of interest, such that many transitions are redirected to the
absorbing failure state.

6 Conclusions and Future Work

In this paper, we have introduced the logic IM-SPDL, a state- and action-
oriented logic whose semantic model contains both Markovian and immediate
transitions. We have shown how the model checking of IM-SPDL path formulae
can be carried out with the help of a product transition system construction.
The papers also presented some empirical results, obtained with our tool CASPA,
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which showed the feasibility and efficiency of the proposed method in spite of
the theoretical worst-case complexity of the model checking algorithm.

As future work, it would be interesting to check whether the validity of IM-
SPDL is invariant with respect to some notion of bisimulation, as is the case for
other stochastic temporal logics. Such a result would enable reductions of the
state space prior to model checking, which could be of great value, in particular
in connection with compositional model checking approaches. We also plan to
extend IM-SPDL with random time bounds, i.e. we intend to replace the fixed
time bounds by time bounds whose value is drawn from a random variable.
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Abstract. Model checking of safety properties can be scaled up by pool-
ing the CPU and memory resources of multiple computers. As compute
clusters containing 100s of nodes, with each node realized using multi-
core (e.g., 2) CPUs will be widespread, a model checker based on the
parallel (shared memory) and distributed (message passing) paradigms
will more efficiently use the hardware resources. Such a model checker
can be designed by having each node employ two shared memory threads
that run on the (typically) two CPUs of a node, with one thread respon-
sible for state generation, and the other for efficient communication, in-
cluding (i) performing overlapped asynchronous message passing, and
(ii) aggregating the states to be sent into larger chunks in order to im-
prove communication network utilization. We present the design details
of such a novel model checking architecture called Eddy. We describe the
design rationale, details of how the threads interact and yield control,
exchange messages, as well as detect termination. We have realized an
instance of this architecture for the Murphi modeling language. Called
Eddy Murphi, we report its performance over the number of nodes as
well as communication parameters such as those controlling state aggre-
gation. Nearly linear reduction of compute time with increasing number
of nodes is observed. Our thread task partition is done in such a way
that it is modular, easy to port across different modeling languages, and
easy to tune across a variety of platforms.

1 Introduction

This paper studies the following question:

Given that shared memory programming will be supported by multicore
chips (multi-CPU shared memory processors) programmed using light-
weight threads, and given that such shared memory processors will be
interconnected by high bandwidth message passing networks, how best
to design a safety model checker that is (i) efficient for such hardware
platforms, and (ii) is modular to permit multiple implementations for
different modeling languages?
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The importance of this question stems from many facts. First of all, basic finite-
state model checking must continue to scale for large-scale debugging. Multiple
CPUs per node are best exploited by multi-threaded code running on the nodes;
the question, however, is how to organize the threads for high efficiency and
modularity, especially given that thread programming is error-prone. Moreover,
most parallel versions of safety model checkers employ hash tables distributed
across the nodes, with new states possibly sent across the interconnect to be
looked up in these tables (as was done since the very first model checkers of
this kind, namely Stern and Dill [1] and Lerda and Sisto [2]); we do not deviate
from this decision. What we explore in this paper is whether, by specializing the
threads running within each node to specific tasks, (i) the state generation effi-
ciency can be kept high, (ii) communication of states across the interconnect can
be performed efficiently, and (iii) the overall code remains simple and modular
to be trustworthy.

We have developed a parallel and distributed model checking architecture
called Eddy that meets the above objectives. A specific model checker following
this architecture, called Eddy Murphi (for the Murphi [3] modeling language) has
been developed and released. To the best of our knowledge, such a model checker
has previously not been discussed in the literature. There are a wide array of
choices available in deciding how to go about designing such a model checker.
The decisions involved are how to allocate the CPUs of each compute node to
support state generation, hash-table lookup, coalescing states into bigger lines
before shipment, overlapped computation and communication, and handling dis-
tributed termination. Many of these choices may not achieve high performance,
and may lead to tricky code. We are placing a great deal of importance on
achieving simple and maintainable code, allowing the model checker to be easily
re-targeted for a different modeling language, and even make the model checker
self calibrating over a wide range of hardware platforms. While much remains
to be explored as well as implemented, Eddy Murphi has realized many of the
essential aspects of the Eddy architecture. In particular, Eddy Murphi employs
shared memory CPU threads in each node running POSIX PThreads [4, 5] code,
with the nodes communicating using the Message Passing Interface (MPI, [6]).
It dramatically reduces the time taken to model check several non-trivial Murphi
models, including cache coherence protocols.

We have also: (i) ported Eddy Murphi to work using a Win32 porting of
PThreads [7] as well as Microsoft Compute Cluster Server 2003 [8]; (ii) cre-
ated Eddy SPIN, a preliminary distributed model checker for Promela1. Both
Eddy SPIN and Eddy Murphi are based on the same architecture: while the state
generation (“worker”) thread more or less executes the reachability computation
aspects of the standard sequential SPIN or Murphi, the communication threads
are organized in an identical manner. In the rest of the paper, we will focus on
the internal organization of Eddy Murphi, the impact of its performance over the

1 Eddy SPIN was based on a refactored implementation of SPIN [9] which did not
exhibit the scalability advantages reported here for Eddy Murphi owing to its very
high overheads; this will be corrected in our next implementation.
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number of nodes as well as communication parameters such as those controlling
state aggregation, as well as scalability results from a catalog of benchmarks.
Since we do not have the ability to compare “apples to apples” with other ex-
isting model checkers, our contributions fall in the following categories. (i) We
provide a detailed description of the algorithms used in Eddy Murphi. (ii) We
report the performance of Eddy Murphi across a wide spectrum of examples.
In one case, Eddy Murphi model-checked a very huge protocol in 9 hours using
60 nodes when sequential Murphi had not enough memory resources to verify it
and a disk-based sequential Murphi [10]2 did not finish even after a week. (iii) In
[11], we provide extensive experimental results, the full sources of Eddy Murphi,
as well as a Promela verification model that explicates the detailed organization
of its thread and message passing code.

The rest of this paper is organized as follows. Section 1.1 presents specific
design considerations that lead to the selection of a natural architecture and im-
plementation for Eddy. Section 2 presents the algorithm used by Eddy. Section 3
has our experimental results. Section 4 concludes.

Related Work: Parallel and distributed model checking has been a topic of
growing interest, with a special conference series (PDMC) devoted to the topic.
An exhaustive literature survey is beyond the scope of this paper. Many distrib-
uted model-checkers based on message passing have been developed for Murphi
and SPIN. Distributed BDD-based verification tools have been widely studied
(e.g., [12]). In [13], a multithreaded SAT solver is described. The idea of coa-
lescing states into larger messages for better network utilization in the context
of model checking was pointed out in [14]. Previous parallel Murphi versions
has been devised by Stern and Dill [15], Sivaraj and Gopalakrishnan [16], and
Kumar and Mercer [17]. As said earlier, a parallel and distributed framework for
safety model checking similar to Eddy is believed to be new.

1.1 Design Considerations for Eddy

Our main goal is to have the two threads used in Eddy run without too many syn-
chronizations. This increases the intra node parallelism. Furthermore, if thread-
binding to CPUs is available (depending on the underlying OS), then context-
switching overhead can also be reduced. Hence, we design our two threads to
have complementary tasks, thus maximizing the parallelism between them. One
thread will be responsible for state generation, hash table lookup and error
analysis, while the other one will handle the communication part, i.e. receiving
and sending messages. We also give to this latter thread the task to group up
states to be communicated in a big coalesced chunk of memory called a line. We
experimentally show that this is far more efficient than suffering the overhead
of sending individual states across.

Terminology: A Nondeterministic Finite State System (shortened NFSS in the
following) S is a 4-tuple (S, I,A, next), where S is a finite set of states, I ⊆ S

2 This version of Murphi is able to limit the performance slowdown due to disk usage
to an average factor of 3.



Parallel and Distributed Model Checking in Eddy 111

FIFO Queue Q = ∅; /* BF consumption queue */
HashTable T = ∅; /* for visited states */

/* Returns true iff φ holds in all the reachable states */
bool BFS(NFSS S , SafetyProperty φ)
{
let S = (S, I,A, next);
/* is there an initial state which is an error state? */
foreach s in I {
i f (! IfNotVisitedCheckEnqueue(s))
/* IfNotVisitedCheckEnqueue returned false , thus s is

an error state and S does not satisfy φ */
return false;

}
/* visit */
while (Q �= ∅) {
s = Dequeue(Q);
/* s expansion */
foreach (s_next , a) in next(s) {
i f (! IfNotVisitedCheckEnqueue(s_next))
return false;

} /* foreach */
} /* while */
/* error not found , S satisfies φ */
return true;

} /* BFS() */

/* returns false if s is an error state (i.e. does not
satisfy φ), true otherwise */

bool IfNotVisitedCheckEnqueue(s, AP φ)
{
i f (s is not in T) {
i f (!φ(s))
return false;

HashInsert(T, s);
Enqueue(Q, s);
}
return true;

} /* IfNotVisitedCheckEnqueue() */

Fig. 1. Explicit Breadth–First Search

is the set of the initial states, A is a finite set of labels and next : S → 2S×A

is a function taking a state s as argument and returning a set next(s) of pairs
(t, a) ∈ S ×A. Given an NFSS S = (S, I,A, next) and a property φ defined on
states (i.e., φ : S → {true, false}), we want to verify if φ holds on all the states
of S (i.e., for all s ∈ S, φ(s) holds). The algorithm in Figure 1 is what Murphi
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essentially implements3. We seek to parallelize this algorithm based on a number
of established as well as new ideas. Our objective is to support distributed hash
tables as in contemporary works. This assigns each state s to a home node p(s)
determined by a surjective partitioning function p that maps state vectors to
node numbers lying in the range {1 . . .N}. Kumar and Mercer [17] study the
effect of partitioning on load balancing—an important consideration in parallel
model checking. We consider the selection of partition functions to be orthogonal
to our work.

Given all this, the state generation rate and the communication demands of
a parallel safety model checker very much depends on many factors. The amount
of work performed to generate the successor states of a given state is a critical
consideration. In Murphi, for instance, each “rule” is a 〈guard, action〉 pair,
with guards and actions being typically coarse-grained. Often, the guards and
actions span several pages of code, often involving procedures and functions. In
other modeling languages such as Promela and Zing [18], the amount of work to
generate the successors of a given state can vary greatly. After gaining sufficient
understanding, we hope to have a user-assisted calibration feature for all model
checkers constructed following the Eddy architecture. In the rest of this paper,
we assess results from our preliminary implementation.

2 A New Algorithm for Parallel Model Checking

We present the Eddy Murphi algorithms in Section 2.1, after a brief overview of
the MPI and PThread functions used.

MPI Functions Employed in Eddy Murphi. MPI (Message Passage Inter-
face, [19, 20, 6]) is a message-passing library specification, designed to ease the
use of message passing by end users, library writers, and tool developers. It is
in use in over 60% of the world’s supercomputers and clusters. We now present
a simplified description of the semantics of certain MPI functions used in our
algorithm descriptions (we also take the liberty to simplify the names of these
functions somewhat).

– MPI Isend(obj, dest node, msg label) sends obj to dest node, and the
message is labeled msg label. Note that this operation is non-blocking (the
‘I’ stands for immediate), i.e. it does not wait for the corresponding receive.
Here, obj is an object of any type, dest node is a node of the computing
network, msg label is the label message (chosen between state, termination,
termination probe). The following always holds:
• if msg label is state, then obj is a set of states;
• if msg label is termination probing, then obj is a token structure (see

Fig. 4);

3 This rather straightforward algorithm is included in this paper to help contrast our
distributed model checker.
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• if msg label is termination, then obj is a boolean value (to be assigned
to the global variable result).

– MPI Iprobe(src node, msg label) returns true if there is a message sent
by the src node node with the label msg label for the current node. Oth-
erwise, false is returned. As the ‘I’ suggests, also this call is non-blocking.
If src node is ANY SOURCE instead of a specific node, then only the message
label is checked.

– MPI Recv(src node, msg label) returns the message sent by the src node
node to the current one with the label msg label. We will call this function
only after a successful call to MPI Iprobe, thus we are always sure that
a MPI Isend had previously sent something to the current node with the
given msg label. Again, if src node is ANY SOURCE, then the current node
is retrieving the message without checking which node is the sender (only
the message label is checked).

– MPI Test(obj) returns true iff obj has been successfully sent, i.e. if the
sending has been completed. Note that this is necessary because we are
using MPI Isend, that performs an asynchronous sending operation. We will
call this function only for test sending completion for states.

– MPI MyRank() returns the rank or identifier of the node.

Finally, with #MPI Isend(msg label) (resp., #MPI Recv(msg label)), we
denote the number of MPI Isend (resp. MPI Recv) performed with the message
label msg label. Note that here msg label is always state, i.e. we count only
the sending operations regarding sets of states.

PThread Functions Employed in Eddy Murphi. POSIX PThread [4, 5] is
a standardized programming interface for threads usage. In our model checker
we use the following functions. Note that, w.r.t. the PThread standard, we again
change the function interface to make their usage clearer:

– pthread create(f) creates a new thread. Namely, the thread that calls
this function continues its execution, whilst a new thread is started which
executes the function f.

– pthread exit() terminates the thread which calls it.
– pthread join() called by the “main” thread (i.e. the one having called

pthread create), suspends the execution of this thread until the other one
terminates (because of a pthread exit()), unless it is already terminated.

– pthread yield() Forces the calling thread to relinquish use of its processor.

2.1 Eddy Murphi Algorithms

In Figures 2, 3 and 4, we show how the breadth-first (BF) visit of Figure 1
is modified in our parallel approach. Since we use a SPMD (Single Program
Multiple Data) paradigm, the code listed is executed on all the nodes of the
computational network. The worker thread is described in Figure 2, and the
communication thread in Figures 3 and 4.
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/* local data (each node has its own copy of this) */
FIFO Queue Q = ∅; HashTable T = ∅;
bool Terminate = false ; bool result = true;
FIFO_Queue_lines CommQueue [NumNodes ] = ∅;
SafetyProperty φ;

bool ParBFS(NFSS S) {
pthread_create (CommThread );
i f IAmRoot () { /* i.e., MPI_MyRank () == 0 */
foreach s in I {
i f (! CheckState (s)) { Terminate = true; break;}

} }
while (! ParTerminate ()) {
(s, checked) = Dequeue(Q);
i f (! checked) { /* sent by some other node */
i f (s in T) continue;
else HashInsert(T, s);

}
foreach (s_next , a) in next(s) {
i f (! CheckState (s_next)) {Terminate = true; break;}

} }
Terminate = true; pthread_join ();
return result;

} /* ParBFS() */

bool CheckState (state s) {/* false if error state found */
owner_rank = owner(s);
i f (owner_rank == MPI_MyRank ()) { /* this node owns s */
i f (s is not in T) {
i f (!φ(s)) { result = false ; return false ;}
HashInsert(T, s); Enqueue(Q, (s, true));

} /* otherwise , s is already visited */
} else { /* this node does not own s */
i f (!φ(s)) { result = false ; return false ;}
Enqueue_line (CommQueue [owner_rank ], s);

return true;
} /* CheckState () */

bool ParTerminate () { /* true if computation is over */
i f (Terminate ) return true;
i f (Q �= ∅) return false;
i f (! Terminate ) sleep;
i f (Terminate ) return true;
return false ; /* here , new states are in Q */

} /* ParTerminate () */

Fig. 2. Worker thread
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CommThread () { /* Communication thread */
while (true) {
ProcMess (); /* if termination was received , exits */
i f (Terminate ) End(true); /* φ does not hold */
DoSends ();
Free_lines (CommQueue ); /* tests sending completion */
StableCondTokenProc (); /* termination probing */

} } /* CommThread () */

ProcMess () { /* Processes incoming messages */
i f (MPI_Iprobe (ANY_SOURCE , state)) ReceiveStates ();
i f (MPI_Iprobe (ANY_SOURCE , termination )) {
/* some other nonroot node found an error , or the root

decided the search is finished */
result = MPI_Recv(ANY_SOURCE , termination );
End( false);

}
i f (MPI_Iprobe (prev_ring_node , termination probing ))
ReceiveTermProb ();

} /* ProcessMessages () */

ReceiveStates () { /* Processes incoming state messages */
S = MPI_Recv (ANY_SOURCE , state);
foreach state s in S {Enqueue(Q, (s, false));}
/* here Q might be empty because of thread scheduling */
i f (worker sleeping && Q �= ∅)
wake the worker thread up; /* wake up and work */

} /* ReceiveStates () */

DoSends () { /* Try to send what it is now in CommQueue */
foreach computing node n different from MPI_MyRank () {
while ( lines_ready (CommQueue [n])) {
S = Dequeue_line (CommQueue [n]);
MPI_Isend (S, n, state);

} } } /* DoSends () */

End(bool broadcast ){ /* Shuts down CommThread () */
i f (broadcast ) { /* terminate all the other nodes */
foreach computing node n
MPI_Isend (result , n, termination );

}
Terminate = true; /* also the worker thread terminates */
i f (worker sleeping)
wake the worker thread up; /* wake up and die */

pthread_exit ();
} /* End() */

Fig. 3. Communication thread (continues in Fig. 4)
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/* Local data (each node has its own copy of this) */
bool TokenValid = IAmRoot ();
struct { int snt; int rcvd ; } token;

/* Possibly starts or continues the token passing */
StableCondTokenProc () {
i f ( TknVldAndNthngToDo ()) {
/* initially , only the root might enter */
i f (IAmRoot ()) {
/* token processing to see if we can terminate */
token.snt = token.rcvd = 0;

} else {
token.snt += # MPI_Isend (state);
token.rcvd += # MPI_Recv (state);

}
MPI_Isend (token , next ring node , termination probing);
TokenValid = false ; /* token sent away ... */

} } } /* StableCondTokenProc () */

/* True iff token valid and nothing can be done locally */
bool TknVldAndNthngToDo () {
i f (TokenValid && worker sleeping) {
Try DoSends () , then ProcessMessages ();
return (no operation performed );

}
return false;

} } /* TknVldAndNthngToDo () */

/* Processes incoming termination probing messages */
ReceiveTermProb () {
token = MPI_Recv(ANY_SOURCE , termination probing);
TokenValid = true;
i f ( TknVldAndNthngToDo ()) {
/* basing on local information , the computation can be

terminated */
i f (! IAmRoot ()) {
/* rehop the token , after having modified it */
token.snt += # MPI_Isend (state);
token.rcvd += # MPI_Recv (state);
MPI_Isend (token , next_ring_node , termination probing );
TokenValid = false ; /* token sent away ... */

} else { /* the token has finished its tour */
i f (token.snt + # MPI_Isend (state) ==

token.rcvd + # MPI_Recv (state))
End(true);

/* otherwise , the computation will continue */
} } } /* ReceiveTermProb () */

Fig. 4. Communication thread (functions for termination)
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The worker thread is somewhat similar to the standard BF visit of Figure 1,
but with important changes. One is that only the computation root node gen-
erates the start states. However, the most important change is in the handling
of the local consumption queue Q.

In fact, whenever a new state s is generated, and s turns out not to be
an error state, then a states distribution function (called owner() in Figure 2)
determines if s belongs to the current node or not. In the first case, the current
node inserts s in Q as well as in the local hash table, unless it was already visited,
as it happens in a standalone BF. In the second case, s will be sent to the node
p(s) owing it; p(s) will eventually then explore s upon receiving it.

However, in order to avoid too many messages between nodes, we use a
queuing mechanism that allows to group as many states as possible in a unique
message. To this aim, the worker thread enqueues s in a communication queue
(CommQueue in Fig. 2). Then, the communication thread will eventually dequeue
s from CommQueue and send it p(s). The details of this queuing mechanism will
be explained in Section 2.2.

Note that only the worker thread can dequeue states from the local BF con-
sumption queue Q. On the other hand, the enqueuing of states in Q is performed
both by the worker thread (see function CheckState() in Fig. 2) and the com-
munication thread. This latter case happens as a result of receiving states from
some other node (see function ReceiveStates() in Fig. 3). Since the states re-
ceived from other nodes could be both new or already visited, the worker thread
performs a check after having dequeued a state received from another node. To
distinguish between local generated states (already checked for being new or
not) and received states (on which the check has to be performed), Q stores pairs
(state, boolean) instead of states.

As for the communication thread, it consists of an endless loop essentially
trying to receive and send messages. As stated earlier, there are three type of
messages, each carrying:

– states; this kind of messages can be exchanged by every couple of nodes,
where the sender is the node generating the states and the receiver is the
node owning the states. More details on the sending of this kind of messages
are in Section 2.2.

– termination probings; here, MPI node ranks are used to imagine the com-
putation network to form a ring on which the termination probing message
is exchanged only between neighbors. This allows us to call the termination
probing message a token. Thus, each node receiving a token from its left
neighbor, will forward it to its right neighbor. However, the forwarding is
performed only when the current node is unable to do anything locally (i.e.,
the worker thread is sleeping due to empty BF consumption queue and there
are no messages to be sent or received).

The token message chain can be started only by the root node and ends
when the root node receives the token back by the last node. Since every node
updates the global sent and received message counting on the token before
forwarding it, if the root finds the two counter to match then the parallel
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computation is over. In fact, this implies that all the nodes are inactive (i.e.
with the worker thread sleeping) and all messages that have been sent have
also been received.

– termination; message of this kind are always broadcasted by one node to
all the others. Namely, the source can be either the root node (when the
termination probing is successfully terminated) or any node. In the first
case, all the reachable states have been globally visited, and the system is
correct w.r.t. the invariant property φ we want to verify. In the second case,
there is an error state somewhere (i.e. a state s such that φ(s) = 0), and the
termination message will be sent by the node which has discovered it (note
that it could be also the root node, and that more than one error state could
be discovered at the same time by different nodes).

2.2 The Communication Queue Mechanism

A more detailed description is needed for the communication queue handling
(i.e. CommQueue in Figures 2 and 3). The purpose of this data structure is to
avoid sending each state separately: on the contrary, it allows to group up as
many states as reasonable, thus reducing the communication overhead. Of course,
grouping is possible only if the destination is the same, thus there is a commu-
nication queue for every possible destination node4.

Differently from Q, which is a traditional FIFO queue (storing pairs (state,
boolean)), each communication queue is organized as an array of arrays of states.
We will refer to each array of states as a line, thus our parallel algorithm depends
on two parameters:

NumLines the number of lines used;
LineSize the number of states for each line.

In Figures 2 and 3, there are four functions accessing CommQueue. In order
to explain how they work, we have to say that at every execution time there is
only one active line (i.e. the line on which the states are currently added), while
the other lines status can be:

waiting to be sent these lines already contain all the LineSize states they are
allowed to, and they are waiting to be sent;

currently being sent also these lines are filled up, but they have already been
passed to MPI Isend; however, the sending operation is still not terminated.
Following the MPI standard specification, the contents of these lines cannot
by accessed until the sending operation has been successfully completed;

waiting to be active these lines contain no states, or have already been suc-
cessfully sent, so their content can be overwritten with new states.

Thus, three line index lists are maintained, one for each of these line types;
we will call the former list WTBS, the second one CBS and the latter WTBA. Initially,
4 Indeed, our implementation uses NumNodes−1 communication queues per node, while

in Figure 2 NumNodes queues are declared. This allows to simplify our pseudocode.
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the first line is the active one, WTBA contains all the other NumLines − 1 lines
and WTBS and CBS are empty.

We are now ready to give the semantics of the four functions manipulating
commQueue:

Enqueue line(CommQueue, state) called by the worker thread, adds state at
the end of the active line of CommQueue. It also handles the active line filling,
by properly modifying WTBS and WTBA.

Dequeue line(CommQueue) called by the communication thread, returns the
first line ready to be sent in CommQueue, and properly modifies WTBS and
CBS. If there are no ready lines, and the worker thread is sleeping, then the
active line is returned.

lines ready(CommQueue) returns true if Dequeue line returns (a line with) at
least one state.

Free lines(CommQueues) calls MPI Test on all the lines currently being sent
(no matter which queue they belong). Those lines passing the test are moved
to the WTBA list.

A more detailed pseudocode describing these function can be found in Fig. 5.
Summing up, the evolution of a line status is shown in Fig. 6, where we use

the list acronyms to denote the status of the lines that are stored in them. As
for the events causing the status transitions, if l is the line under analysis then
the following holds:

1. is triggered when a call to Enqueue line fills up the active line and l is the
first of the WTBA list;

2. is triggered when a call to Enqueue line fills up the active line (which coin-
cides with l)

3. is triggered when a call to Dequeue line returns l;
4. is triggered when a call to Free line finds l to be entirely sent.

Finally, note that the initial state of the automaton in Fig. 6 is Active for
the first line in the lines array, and WTBA for all the others.

2.3 Algorithm Rationale

In parallel algorithms for model checking proposed to date, nodes alternate be-
tween state generation, state sending, and state receiving. With only one thread
available, providing maximal overlap between these activities requires the use of
non-blocking MPI communications amidst the rather intricate state generation
steps of a model checker. This can render the code brittle, non-portable, and
ultimately inadequately concurrent. In contrast, in our design, state generation
and communication are in two threads which, on an increasing number of hard-
ware platforms, map onto multi-core CPUs. Through the use of threading and
the lines queues, we minimize the time that a worker spends in a waiting state.
The threading itself allows the worker not to be kept waiting for communication
handling. In fact, there are only two other events that cause the worker thread
to wait:
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/* Puts s in the active line , and handles filling */
void Enqueue_line (FIFO_Queue_line Q, state s) {
while (1) { /* breaked once there is an active line */
i f (Q.active_line is defined) {
Q.active_line = Q.active_line ∪ s;
i f (length(Q.active_line ) == LineSize ) {
Q.WTBS = Q.WTBS ∪ Q.active_line ;
i f (Q.WTBA == ∅) undefine Q.active_line ;
else {
Q.active_line = head(Q.WTBA);
Q.WTBA = tail(Q.WTBA);
Clear(Q.active_line );/* length(Q.active_line ) == 0 */

} }
break; /* exits while(1) */

}
i f ( Terminate ) break; /* exits while(1) */
i f (too much iterations without an active line found)
pthread_yield (); /*yields to the communication thread*/

} } } /* Enqueue_line () */

/* Returns a line that can be sent away */
state_array Dequeue_line (FIFO_Queue_line Q) {
i f (Q.WTBS �= ∅) {
ret = head(Q.WTBS);
Q.WTBS = tail(Q.WTBS);
Q.CBS = Q.CBS ∪ ret;
return ret;

}
else i f ( worker sleeping ) return Q.active_line ;
else return NULL;

} /* Dequeue_line () */

bool lines_ready () { /* Can something be sent ? */
i f ( Dequeue_line can return at least one state)
return true;

else return false;
} /* lines_ready () */

/* Checks for sending completion */
void Free_lines (FIFO_Queue_lines Qs) {
foreach computing node n different from MPI_MyRank () {
foreach line l in Qs[n].CBS {
i f ( MPI_Test (l)) {
Q.WTBA = Q.WTBA ∪ l; /* with length(l) == 0 */
remove l from Q.CBS;

} } } } /* Free_lines () */

Fig. 5. Communication queue handling
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(1) (2) (3)

(4)

Fig. 6. Evolution of a line status

– When the consumption queue is empty (function ParTerminate in Figure 2);
in this case, the worker thread enters a sleeping status, waiting for some other
node to send some new states, or for termination. However, the wait for new
states to be processed could be extended if the communication threads keep
sending small lines (i.e., containing too few states) to the other nodes. It
should be clear that it is more convenient to send as many states as possible
in one shot. To achieve this, it is sufficient to set LineSize to an adequately
high number. Note however that setting this parameter to a too high number
may cause a delay in the sending of the states, thus causing other nodes to
be idle.

– When there are no available lines in WTBA of the communication queue for
some node; thus, all the lines are in WTBS or CBS (in this case, the worker
loops in the while(1) statement of function Enqueue lines in Figure 5).
In this case, after a given number of attempts, the worker thread yields to
the communication thread, so that some line becomes available earlier. Note
that at each iteration the worker also checks if Terminate has been set as
a result of receiving a termination message (without this check, deadlocks
are possible if a termination message is received when the worker is inside
Enqueue lines). This problem can be mitigated by properly choosing the
number of lines and their length. If there are too few lines, then the worker
thread will often be stopped in a waiting status when trying to submit states
to the communication queues. Thus, the parameter NumLines should be as
high as possible.

However, NumLines and LineSize cannot be set indefinitely high, since they
are memory consuming: e.g., if 10 bytes are needed to represent a state in a
given model to be verified, then having 1024 lines each with 1024 states on a
50-nodes computation will result in about 500MB RAM memory requirement
for each node. This will reduce the space for hash table and consumption queue,
so affecting the worker thread performances.

Fortunately, we will show that 1024 or 512 states are a good value for
LineSize, whilst NumLines can be much smaller, e.g. 8 or 16. In fact, the number
of lines merely needs to be large enough to allow overlap of the two threads.

3 Experimental Results

To assess the feasibility of our approach, we implemented our parallel algo-
rithm within the model checker Murphi [21]. We will call the resulting verifier
Eddy Murphi [11].
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We use Eddy Murphi to run different kinds of experiments. All the exper-
iments we run are computed as an average over at least two runs, and were
repeated until an acceptable standard deviation was reached (all details pro-
vided at [11]).

Initially, we tune the communication parameters, i.e. the number of lines
(NumLines), and the size of each line (LineSize). To do this, we use the pro-
tocol sci [15], available within the standard Murphi distribution, modifying its
parameters in a way such that it has now a fairly high number of states (approx.
2.7 × 106). We then run different verifications on sci, changing the values for
NumLines and LineSize; these values, as already said in Sect. 2.3, are chosen to
be low for NumLines and high for LineSize; we also change the number of nodes.
The results are in Table 1, where NL stand for NumLines, LS for LineSize and
Time % is the ratio between the execution time for Eddy Murphi and the ex-
ecution time for standard Murphi. In Table 1, we report only the four best
configurations for our parameters, ordered by decreasing time. It is clear that
the best results are obtained with 1024 states for each line, and with a number
of lines between 8 and 32. To keep memory occupation small enough, we choose
8 lines with 1024 states each.

Table 1. Experimental results for the parameter tuning, carried out on a multi-core
120-nodes cluster; each node has 2 Intel XEON processors at 2.4 GHz, with 2GB of
RAM

40 Nodes 20 Nodes 10 Nodes
NL LS Time % NL LS Time % NL LS Time %
32 1024 0.023984 32 1024 0.046594 16 1024 0.106446
16 1024 0.023989 2 1024 0.046677 32 1024 0.106805
8 1024 0.024058 16 1024 0.046717 8 1024 0.106833
2 1024 0.024136 8 1024 0.046884 1 512 0.107657

Next, we use these parameters values to compare the performances of
Eddy Murphi with (standard) Murphi. In these experiments we use five pro-
tocols from the Murphi distribution, in order to be able to compare the perfor-
mances of Eddy Murphi vs Murphi. These protocols have been chosen in such a
way that their number of states is high enough to make the use of parallel model
checker meaningful; indeed, they all have between 106 and 108 states.

The results are in Fig. 7, where we graph the speedup obtained by
Eddy Murphi w.r.t. Murphi (the inverse of Table 1, i.e. Murphi time

Eddy Murphi time)
as a function of the number of compute nodes. Fig. 7 shows that we obtain a
nearly linear speedup on almost all the examples, and that on all examples we are
considerably faster than standalone Murphi. Moreover, note that the protocol
peterson is the only one not showing a linear speedup: running the verifica-
tion on 40 nodes is worse than on 30. However, this is due to the particular
state partition function we use (i.e. the implementation we chose for function
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Fig. 7. Experimental results for performances comparison with standard Murphi, car-
ried out on the same cluster of Table 1

owner in Fig. 2): on this protocol, for 30 nodes we have that each node owns
about n

30 states, but this does not hold for 40 nodes. Here, we do not address
state partition functions performances, since this is an orthogonal problem to
our work.

Note that a previous parallel version of Murphi was already developed [22].
We could not re-run the parallel Murphi implementation of [22] because it was
developed for the Berkeley NOW hardware which is unavailable. However, when
using an MPI porting (reported by [16]), we do not observe the speedup men-
tioned in [22], and it is always much slower than standard Murphi. This is proba-
bly due to the fact that now CPUs are faster, and that the clusters network used
in [22] are optimized for message passing, which is not the case with MPI, that
privileges the portability. Parallel Murphi implementations were also reported
by [17], but we were not able to obtain a reliable version of this code.

Finally, we present a very large protocol whose verification is not feasible
on a standalone machine. This is the case of the FLASH protocol [23] with
5 processors and 2 data values as parameters. This protocol has more than
3 × 109 states, and its verification with standard Murphi would require a huge
amount of RAM memory (assuming 40 bits for each state in hash compaction, we
would need 15 GB of RAM for the hash table only), as well as an unacceptable
computational time. On the other hand, by using a disk version of Murphi [10],
the computation lasts more than 1 week (we do not know the exact amount
of time, but a projection based on the first part of the verification leads to a
probable execution time of 3 weeks). However, we successfully completed the
verification of this protocol with Eddy Murphi on 60 nodes in approximately 9
hours.

4 Conclusions

We have developed a novel algorithm and an associated framework for shared
memory and distributed memory model checking of safety properties, called
“Eddy.” This is the first such model checker that we are aware of. Eddy meets
many goals that we had originally set forth. One important goal was to ensure a
clean separation of concerns between next-state generation and communication
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during distributed model checking. This, in turn, has several advantages. One
advantage is that it makes the code easier to understand, validate, and mod-
ify. It also helps make the model checking framework more generic by allowing
us to replace the next-state generation logic (e.g., switch over from, say, Mur-
phi to SPIN or Zing) without changing the communication management part
very much. Another advantage is the increased concurrency possible when the
next-state generation and communication management activities are run as two
separate threads. Last but not least, the two threads running per node of Eddy
can exploit the two separate CPUs of dual-core CPUs that will become widely
available soon. These threads will then have lower or no context-switch over-
heads, and also utilize the cache memories of the CPUs much more effectively.
Eddy optimizes communication in several ways: (i) by not sending individual
states, but rather much more bulky units that collect several states before ship-
ment, the interconnection utilization vastly improves. (ii) by performing multiple
asynchronous sends in an overlapped manner, the overall throughput improves.

Our experiments confirm that the Eddy algorithm is quite robust and scales
extremely well on a wide variety of nodes as well as communication parame-
ters such as those controlling state aggregation. In particular, large instances of
the Stanford FLASH protocol that cannot be verified through sequential model
checking on powerful uniprocessors can now be verified quite fast using multi-
ple nodes. The measurements reported in this paper indicate the actual speed-
ups obtained as well as the impact of line sizes and the number of lines on
performance.

As part of future work, we hope to combine other optimizations with Eddy.
Some of the ideas under consideration are: (i) the use of other ways to record
visited states per node, including disk-based algorithms [10], and the use of
minimal automata [24], (ii) the use of thread-pools if multiple CPUs are available
per node (e.g. hyper-threaded multi-cores), and (iii) self-calibrating versions of
Eddy that set its communication thread parameters based on the measured
network characteristics.
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Abstract. The explicit-state analysis of concurrent systems must
handle large state spaces, which correspond to realistic systems con-
taining many parallel processes and complex data structures. In this
paper, we combine the on-the-fly approach (incremental construction
of the state space) and the distributed approach (state space explo-
ration using several machines connected by a network) in order to in-
crease the computing power of analysis tools. To achieve this, we propose
Mb-DSolve, a new algorithm for distributed on-the-fly resolution of
multiple block, alternation-free boolean equation systems (Bess). First,
we apply Mb-DSolve to perform distributed on-the-fly model check-
ing of alternation-free modal μ-calculus, using the standard encoding of
the problem as a Bes resolution. The speedup and memory consump-
tion obtained on large state spaces improve over previously published
approaches based on game graphs. Next, we propose an encoding of the
conformance test case generation problem as a Bes resolution from which
a diagnostic representing the complete test graph (Ctg) is built. By ap-
plying Mb-DSolve, we obtain a distributed on-the-fly test case genera-
tor whose capabilities scale up smoothly w.r.t. well-established existing
sequential tools.

1 Introduction

The explicit-state verification of concurrent finite-state systems is confronted
in practice with the state explosion problem (prohibitive size of the underly-
ing state spaces), which occurs for realistic systems containing many parallel
processes and complex data structures. Various approaches have been proposed
for combating state explosion: on-the-fly verification constructs the state space
in a demand-driven way, thus allowing the detection of errors without a priori
building the entire state space, and distributed verification uses the computing
resources of several machines connected by a network, thus allowing to scale up
the capabilities of verification tools by one or two orders of magnitude [5, 17].
Practical experience suggests that combining these two techniques leads poten-
tially to better results than using them separately [3, 13, 21].
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Given that verification tools are complex pieces of software, their design
should promote modular architectures and intermediate representations, in or-
der to reuse existing achievements as much as possible. Boolean Equation Sys-
tems (Bess) [23] are a useful intermediate representation for various verification
problems, such as model checking of modal μ-calculus [1, 23], equivalence check-
ing [2, 26], and partial order reduction [31]. Numerous sequential algorithms for
on-the-fly Bes resolution were proposed [1, 23, 29], some of them being subject to
generic implementations, such as the Cæsar Solve library [26, 28], which serves
as computing engine for the model checker Evaluator [29, 26], the equivalence
checker Bisimulator [26, 4], and the reductor Tau Confluence [31, 28], de-
veloped within the Cadp toolbox [11]. Due to their modular architecture, dis-
tributed versions of these tools can be obtained in a straightforward manner by
developing distributed Bes resolution algorithms, such as DSolve [18], which
handles Bess with a single equation block and underlies the distributed version
of Bisimulator [17].

In this paper, we propose Mb-DSolve, a new distributed on-the-fly resolu-
tion algorithm for multiple block, alternation-free Bess. The algorithm is based
upon a distributed breadth-first exploration of the boolean graph [1] representing
the dependencies between boolean variables of a Bes. Our first application of
Mb-DSolve was the distributed on-the-fly model checking of alternation-free
μ-calculus formulas (as computing engine for Evaluator), using the standard
translation of the problem into a Bes resolution [20, 1]. The only existing dis-
tributed on-the-fly algorithm for solving this problem was proposed in [5] and
is based on game graphs, stemming from a game-based formulation of the prob-
lem [32]. The latest version of this algorithm, called Ptcl1 and implemented
in the model checker UppDmc [13], has an extension, called Ptcl2, which is
also able to handle μ-calculus formulas of alternation depth 2 [22] and exhibits
good performance on large state spaces, such as those of the Vlts benchmark
suite1. Although the two algorithms Mb-DSolve and Ptcl1 are graph-based
and therefore similar in spirit, Mb-DSolve allows all machines involved in the
distributed computation to handle simultaneously all equation blocks of a Bes,
thus potentially reaching a higher degree of concurrency than Ptcl1, which at
a given moment synchronizes and employs all machines to solve a precise part,
called component, of the game graph. This intuition is confirmed experimentally
on large states spaces from the Vlts benchmark.

Our second application of Mb-DSolve was the distributed on-the-fly gen-
eration of conformance test cases from specifications and test purposes (both
given as state spaces), following the approach advocated in the Tgv tool [16].
To achieve this, we proposed an encoding of the test generation problem as a Bes
resolution from which a diagnostic representing the Complete Test Graph (Ctg)
is built, and we implemented it within Cadp in a tool named Extractor. This
led to sequential and distributed test case generation functionalities, obtained by
applying the algorithms of Cæsar Solve optimized for disjunctive/conjunctive
Bess [28] and Mb-DSolve, respectively. The Bes technology proved again its

1 http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html
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usefulness: the performance of the sequential version of Extractor exhibits
comparable performances with the optimized algorithms of Tgv, and the dis-
tributed version scales smoothly to larger systems. As far as we know, this is the
first attempt of building a distributed on-the-fly conformance test generator.

Related Work. Distributed model checking has also been investigated in the
framework of Linear Temporal Logic (Ltl) [24]. The first distributed model
checking algorithm proposed for Ltl [21] was based upon a non-nested Dfs tra-
versal of the state space, which allowed to check only safety properties. Although
its complexity was not estimated precisely, an implementation of this algorithm
on networks of workstations (Nows) improved the capabilities of Spin [14] for
the analysis of systems exceeding the memory of a single machine.

This work was continued in [3], leading to an extended algorithm able to
perform a distributed nested Dfs and thus to check full Ltl properties. The new
algorithm, which has a cubic time complexity and a linear space complexity in
the size of the state space, allowed to verify systems that could not be handled
by the sequential version of Spin. This algorithm could still be improved by
allowing several Dfs traversals to be performed concurrently.

Paper Outline. Section 2 recalls basic definitions of Bess and describes in
detail the Mb-DSolve resolution algorithm. Section 3 translates the problems of
model checking alternation-free μ-calculus formulas and of conformance test case
generation into Bes resolutions. Section 4 shows experimental data comparing
the performance of the distributed tools with their sequential versions and with
other similar distributed tools. Finally, Section 5 gives some concluding remarks
and directions for future work.

2 Distributed Local Resolution of Alternation-Free BESs

We first define the framework underlying the manipulation of alternation-free
Bess, and then we present the Mb-DSolve algorithm for distributed on-the-fly
resolution.

2.1 Alternation-Free BESs

A Boolean Equation System (Bes) [1, 23], defined over X , a set of boolean
variables, is a tuple B = (x, M1, ..., Mn), where x ∈ X is a boolean variable and
Mi are equation blocks (i ∈ [1, n]). Each block Mi = {xij

σi= opijXij}j∈[1,mi]
is a set of minimal (resp. maximal) fixed point equations of sign σi = μ (resp.
σi = ν). The right-hand side of each equation ij of block Mi is a pure disjunctive
or conjunctive formula obtained by applying a boolean operator opij ∈ {∨,∧}
to a set of variables Xij ⊆ X . The boolean constants false and true abbreviate
the empty disjunction ∨∅ and the empty conjunction ∧∅. A variable xij depends
upon a variable xkl if xkl ∈ Xij . A block Mi depends upon a block Mk if some
variable of Mi depends upon a variable defined in Mk. A block is closed if it
does not depend upon any other blocks. A Bes is alternation-free if there are
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no cyclic dependencies between its blocks; in this case, the blocks are sorted
topologically such that a block Mi only depends upon blocks Mk with k > i.
The main variable x must be defined in block M1.

The semantics [[op{x1, ..., xk}]]δ of a formula op{x1, ..., xk} w.r.t. B =
{false, true} and a context δ : X → B, which must initialize all variables x1, ...,
xk, is the boolean value δ(x1) op ... op δ(xk). The semantics [[Mi]]δ of a block Mi

w.r.t. a context δ is the σi-fixed point of a vectorial functional Φiδ : Bmi → Bmi

defined as Φiδ(b1, ..., bmi) = ([[opijXij ]](δ# [b1/xi1, ..., bmi/ximi ]))j∈[1,mi], where
δ # [b1/xi1, ..., bmi/ximi ] denotes a context identical to δ except for variables
xi1, ..., ximi , which are assigned values b1, ..., bmi , respectively. The semantics of
an alternation-free Bes is the value of its main variable x given by the solution of
M1, i.e., δ1(x), where the contexts δi are calculated as follows: δn = [[Mn]][] (the
context is empty because Mn is closed), δi = ([[Mi]]δi+1) # δi+1 for i ∈ [1, n− 1]
(a block Mi is interpreted in the context of all blocks Mk with k > i).

The local (or on-the-fly) resolution of an alternation-free Bes B =
(x, M1, ..., Mn) consists in computing the value of x by exploring the right-hand
sides of the equations in a demand-driven way, without explicitly constructing
the blocks. Several sequential on-the-fly Bes resolution algorithms are avail-
able [1, 23, 7]; here we adopt the approach proposed in [1], which formulates the
resolution problem in terms of a boolean graph representing the dependencies
between boolean variables. A boolean graph is a triple G = (V, E, L), where
V = {xij | i ∈ [1, n] ∧ j ∈ [1, mi]} is the set of vertices (boolean variables),
E : V → 2V , E = {xij → xkl | xkl ∈ Xij} is the set of edges (dependencies
between variables), and L : V → {∨,∧}, L(xij) = opij is the vertex labeling (dis-
junctive or conjunctive). An example of Bes with three blocks and its associated
boolean graph is shown on Figure 2.

The resolution of variable x amounts to perform a forward exploration of the
dependencies going out of x, intertwined with a backward propagation of stable
variables (whose value is determined) along dependencies; the resolution termi-
nates either when x becomes stable (after propagation of some stable successors)
or when the portion of boolean graph reachable from x is completely explored.

2.2 Distributed Local Resolution Algorithm

The algorithm we propose for distributed on-the-fly resolution of multiple
block, alternation-free Bess is called Mb-DSolve (Multiple Block Distributed
SOLVEr). We consider a computing architecture consisting of P machines (called
nodes), numbered from 1 to P , interconnected via a network and communicat-
ing by message-passing. Examples of such architectures are Nows and clusters
of Pcs. For simplicity, we assume that each node executes a single instance of
Mb-DSolve, called worker, although in practice there may be several worker
instances running on the same node.

The resolution of an alternation-free Bes B = (x, M1, ..., Mn) is done by
means of two breadth-first traversals of the corresponding boolean graph, start-
ing from x: a forward exploration of the dependencies of the variables being
solved, and a backward propagation of stable variables. The traversals are done
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in a distributed manner, each worker node being responsible for solving a subset
of the boolean variables defined in B, determined using a static hash function.

In addition to workers, a special process, called supervisor, usually executed
on the end-user node (numbered 0), is responsible for initializing the distributed
computation by copying files and launching workers on remote nodes, for collect-
ing statistics about the Bes resolution, and for detecting (normal and abnormal)
termination. A description of the supervisor associated to the DSolve algorithm
for solving single block Bess can be found in [18]. Its extension to multiple block
Bess involves a multiplexing of the data structures for each equation block and
of the distributed termination detection (Dtd) algorithm in order to detect the
partial termination of each block and the global termination of the resolution.

The function Mb-DSolve, shown on Figure 1, describes the behavior of a
worker node i ∈ [1, P ] participating to the distributed resolution on P nodes
of the main variable x ∈ V of an alternation-free Bes B = (x, M1, ..., Mn)
represented by its boolean graph G = (V, E, L). The set of successors of a vertex
x is noted E(x). We assume that G is not entirely constructed, but is given
implicitly by its successor function E, which allows to explore G on-the-fly.
Boolean variables are distributed to worker nodes by means of a static hash
function h : V → [1, P ]. The index of the block defining a variable is given by a
function b : V → [1, n], b(xij) = i. Upon termination, the function Mb-DSolve
returns the boolean value computed for the main variable x.

Due to space limitations, only the main part of Mb-DSolve is detailed on
Figure 1. For instance, protocol and exchanged messages used of termination
detection do not figure in the sketched algorithm. To each block k are associ-
ated, locally to node i, several information: a set Si

k ⊆ V containing the visited
vertices; a Bfs queue W i

k storing the vertices visited but not explored yet; a set
Bi

k ⊆ V containing stable variables, whose values must be back-propagated; a set
Ri

k ⊆ V containing unstable variables with interblock predecessor dependencies
(i.e., variables defined in block k and occurring in the rhs of some equation of
another block l); and a set Qi

k ⊆ E storing the interblock transitions going from
block k and pending to be explored. The counter exp reqi

k, initialized to 0, gives
the number of interblock transitions starting from variables in block k locally
to node i, which needs to be eventually traversed by propagating the values of
stable target variables. To each vertex yj

k are associated four fields: a counter
c(yj

k), which keeps the number of yj
k’s successors that must be stabilized in order

to make the value of yj
k stable, its boolean value v(yj

k), a set d(yj
k) containing the

vertices that currently depend upon yj
k, and a boolean stable(yj

k) indicating if
yj

k has a stable value (i.e., if c(yj
k) = 0 or if yj

k belongs to a completely explored
and stabilized portion of block k). These fields are set up by initialize(yj

k) as
follows: the counter c(yj

k) is set to |E(yj
k)| if σk = μ and L(yj

k) = ∧ or σk = ν

and L(yj
k) = ∨, and to 1 otherwise; v(yj

k) is set to false if σk = μ and to true
otherwise; d(yj

k) is initially empty; and stable(yj
k) is initially false.

At each iteration of the main while-loop (lines 6–17), received messages are
processed first (lines 7–8). Then, the block with minimal index li ∈ [1, n] that has
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1 Mb-DSolve(x,(V ,E,L),n,P,h,i)→ B :
2 if h(x) = i then
3 Si

b(x) := {x}; W i
b(x) := put(x, nil);

4 initialize(x)
5 endif; termi

b(x) := false;
6 while ¬termi

b(x) do
7 if IReceive(msgi, senderi) then
8 Read(msgi, senderi)
9 elsif (li := HasStability) ≤ n then

10 Stabilization(li)
11 elsif (ki := HasExpansion) ≥ 1 then
12 Expansion(ki)
13 else
14 Receive(msgi, senderi);
15 Read(msgi, senderi)
16 endif
17 endwhile;
18 returnv(x)

19 Read(mi, si):
20 case mi is
21 Exp(xsi

k , yi
l ) → if k �= l then

22 Qi
l ∪ := {(xsi

k , yi
l )}

23 else Expand(xsi
k , yi

l) endif
24 Evl(xi

k, ysi
l ) → if k �= l then

25 exp reqi
k − := 1 endif;

26 if ¬stable(xi
k) then

27 Stabilize(xi
k, ysi

l ) endif
28 endcase

29 Stabilization(l):
30 while Bi

l �= ∅ ∨ (termi
l ∧ Ri

l �= ∅) do
31 if Bi

l �= ∅ then yi
l := get(Bi

l );
32 Bi

l \ := {yi
l} else yi

l := get(Ri
l);

33 Ri
l \ := {yi

l} endif;
34 forall wj

k ∈ d(yi
l ) ∧ (Bi

l �= ∅ ∨ k �= l)
35 ∧¬termi

b(x) ∧ ¬stable(wj
k) do

36 if h(wj
k) = i then

37 if k �= l then exp reqi
k − := 1

38 endif; Stabilize(wj
k, yi

l)
39 else Sending(Evl(wj

k, yi
l ), h(wj

k))
40 endif
41 endfor; d(yi

l ) := ∅
42 endwhile

43 Stabilize(wi
k, yj

l ):
44 if ((L(wi

k) = ∨) ∧ v(yj
l ))∨

45 ((L(wi
k) = ∧) ∧ ¬v(yj

l )) then
46 s(wi

k) := yj
l ; c(wi

k) := 0;

47 stable(wi
k) := true

48 else c(wi
k) − := 1 endif;

49 if stable(wi
k) then Bi

k ∪ := {wi
k};

50 if wi
k ∈ Ri

k then Ri
k \ := {wi

k}
51 endif; termi

b(x) := stable(x)
52 endif

53 Expansion(k):
54 if W i

k = nil then
55 forall (xj

l , y
i
k) ∈ (Qi

k)
56 ∧¬termi

b(x) do
57 if j �= i ∨ ¬stable(xj

l )
58 then Expand(xj

l , y
i
k)

59 elsif l �= k then
60 exp reqi

l − := 1 endif
61 endfor
62 else
63 xi

k := head(W i
k); W i

k := tail(W i
k);

64 forall yj
l ∈ E(xi

k) ∧ ¬termi
b(x)

65 ∧¬stable(xi
k) do

66 if k �= l then exp reqi
k + := 1

67 endif;
68 if h(yj

l ) = i then
69 if k �= l then
70 Qi

l ∪ := {(xi
k, yj

l )}
71 else Expand(xi

k, yj
l ) endif

72 else
73 Sending(Exp(xi

k, yj
l ), h(yj

l ))
74 endif
75 endfor
76 endif

77 Expand(xj
k, yi

l):
78 if yi

l /∈ Si
l then

79 Si
l ∪ := {yi

l}; initialize(yi
l );

80 if c(yi
l ) �= 0 then

81 W i
l := put(yi

l , W
i
l )

82 else stable(yi
l ) := true endif

83 endif;
84 if k �= l ∧ yi

l �∈ Ri
l then

85 Ri
l ∪ := {yi

l} endif;
86 if stable(yi

l ) then
87 if yi

l ∈ Ri
l then Ri

l \ := {yi
l}

88 endif;
89 if h(xj

k) = i then
90 if k �= l then exp reqi

l − := 1
91 endif; Stabilize(xj

k, yi
l)

92 else Bi
l ∪ := {yi

l};
93 d(yi

l ) ∪ := {xj
k} endif

94 else d(yi
l ) ∪ := {xj

k} endif

Fig. 1. Distributed local resolution of multiple block, alternation-free Bes using its
boolean graph
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x1,2
μ
= x2,1 ∨ x1,3 ∨ x2,2

x1,1
ν= x2,1 ∧ x1,2

x2,1
ν= x3,1 ∧ x1,3

x3,1
ν= x3,1 ∨ x1,3

x2,2
μ
= x1,2

∧

∨ ∨

∨

∧

x1,3
ν= false

on-the-fly resolution
portion explored during an

P1

P2 P3

∧

x1,1

x2,1

x3,1

x1,3 x2,2

x1,2

diagnostic

block 2

block 1

block 3

Fig. 2. A multiple block, alternation-free Bes, its partitioned boolean graph, and the
result of a distributed on-the-fly resolution for x1,1 on three nodes. Black and white
vertices denote false and true variables, respectively.

stable variables not propagated yet (i.e., Bi
l �= ∅) or that is completely explored

but contains interblock predecessor dependencies not yet traversed by backward
propagation of stable values (i.e., termi

l ∧Ri
l), is returned by HasStability and

stabilized by Stabilization(li) (lines 9–10). If such block does not exist, the
block ki with maximal index that has a non-empty Bfs queue (i.e., W i

k �= nil) or
that is completely explored and contains pending resolution requests on unvisited
variables (i.e., exp reqi

k = 0 ∧ Bi
k = Ri

k = ∅ ∧ termi
k ∧ Qi

k �= ∅), is returned by
HasExpansion and explored with Expansion(ki) (lines 11–12). Finally, if there
is no more work on any block, the worker i remains blocked on reception, waiting,
e.g., for termination detection messages sent by the supervisor (lines 14–15).

The boolean graph resolution begins with the successor generation (i.e., ex-
pansion) of main variable x (lines 63–75). Successors are then traversed in a
breadth first (Bfs) manner, and each of the new visited successor variables is
either added to the set of interblock transitions going from block k and pend-
ing to be explored (line 70), either added to Bfs heap (line 71) using primitive
Expand (lines 77–94) locally to node i or sent to a remote node (lines 72–73)
with a message Exp. The other novelty of Mb-DSolve compared to DSolve is
that primitive Expansion(k) explores interblock transitions whose destination
block is k (lines 54–62) when the current visited portion of block k has completely
been explored and detected stable by distributed partial termination detection.
It does so by treating all such interblock transitions (lines 55–56) waiting to be
explored, in order to minimize the number of partial termination detections of
block k which involve costly internode synchronization.

Concerning the stabilization of variables, whose operation has a higher prior-
ity w.r.t. expansion, it is composed of two parts: one being focused on detection
of block portion stability (i.e., passive stabilization) part of the distributed termi-
nation detection algorithm, and the other one being focused on the propagation
of stable variables (i.e., active stabilization) (lines 30–42) either extracted from
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same block l (Bi
l ) or from remote block l (Ri

l). Primitive Stabilize (lines 43–52)
is then invoked to update the value of variable wi

k depending on the propagated
value of yj

l .

Distributed Generation of Diagnostics. The result of the distributed Bes
resolution must be accompanied by a diagnostic (example or counterexample)
which provides the minimal amount of information needed for understanding
the value computed for the main variable x. Mb-DSolve computes diagnostic
information in the form of a boolean subgraph rooted at x, following the ap-
proach proposed in [25]. The minimal information necessary for producing the
diagnostic is stored as s(wi

k) (line 46), indicating the successor of variable wi
k

that stabilized it after a backward propagation (e.g., a true successor of an ∨-
variable). This provides an implicit, distributed representation of the diagnostic,
which can be explored on-the-fly once the resolution has finished.

Distributed Termination Detection for Equation Blocks. The variable
termi

b(x) is set to true when distributed termination of the Bes resolution is
detected. Conditions of termination are: either the main variable x has been
stabilized (c(x) = 0) during backward propagation (line 51), or the boolean
graph has been completely explored, i.e., all local working sets of variables are
empty (∀i ∈ [1, P ], k ∈ [1, n] ·W i

k = nil∧Bi
k = Ri

k = Qi
k = ∅∧exp reqi

k = 0) and
no more messages are transiting through the network. Mb-DSolve implements
a mechanism for detecting the termination of the partial resolution of a block k
on a node i (termi

k). Contrary to the Ptcl2 algorithm underlying the UppDmc
model checker, in which all nodes cooperate for solving a single block at a given
time, our approach allows a fine-grain distribution of the Bes resolution by
allowing each node to work at the resolution of several blocks at the same time.
The detection of the inactivity of nodes w.r.t. the resolution of a particular
block improves the convergence of the distributed Bes resolution by increasing
the probability of finding a partially solved block from which stable values can
be propagated backwards.

Our Dtd is based on the four-counter method presented in [30] on a star-
shaped topology with a central agent (the supervisor) whose role is asymmetric
to worker nodes [15]. Activity status of workers is regularly sent to the supervisor,
which therefore has a global view of the computation and is able to initiate the
Dtd for an equation block with higher probability of success than traditional
ring-based Dtd algorithms.

Example of Distributed Local Resolution. Figure 2 shows an alternation-
free Bes containing three equation blocks and its corresponding boolean graph,
partitioned by the hash function onto three worker nodes P1, P2, P3. Worker
P1 starts the exploration of the boolean graph by expanding the main variable
x1,1, whose successors x2,1 and x1,2 are solved locally by P1 and sent to node
P3, respectively. Variables x2,1 and x1,2 can be expanded in parallel with the
effect that x3,1 is sent to node P2, x1,3 is sent to node P3 (note that x1,3 has an
interblock predecessor dependency with x2,1), and x1,3, x2,2 are solved locally
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by node P3. Since x1,3 is an ∨-vertex without successors (i.e., a constant false),
its value is stable and can be propagated through backward dependencies to its
predecessors; this stabilizes to false the ∧-vertex x2,1, but not the ∨-vertex x1,2.
The further propagation of x2,1 stabilizes x1,1 to false. To illustrate the fixed
point operator, we can emphasize that the final value of x3,1 is true since the
variable is defined by a maximal fixed point boolean equation, and has an initial
value true. Moreover, we should make clear that the block partitioning of the
Bes is specific to a problem resolution and totally independent from the hashing
function used to distribute the Bes onto remote computing nodes.

The light grey area delimits the portion of the boolean graph that was ex-
plored in order to complete the resolution of x1,1. The dark grey area delimits the
diagnostic (counterexample) associated to x1,1, which is obtained by choosing,
for each ∧-variable x, the successor s(x) which stabilized it to false, computed
by Mb-DSolve during propagation.

Complexity in Time, Memory, and Messages. Mb-DSolve is based on
the theory of boolean graphs underlying the sequential resolution algorithms
for alternation-free Bess [1]. It consists roughly of two intertwined traversals
(forward and backward) of the boolean graph, with a worst-case time complex-
ity O(|V | + |E|). The same bound applies for memory complexity, because of
the backward dependencies stored during resolution for eventual propagations
of stable variables. The communication cost of Mb-DSolve can also be esti-
mated, assuming that messages (excluding those for Dtd) are sent for each
cross-dependency (i.e., edge (x, y) ∈ E | h(x) �= h(y)). Since the hash function h
shares variables equally among nodes without a priori knowledge about locality,
it also shares dependencies equally. Thus, the number of cross-dependencies can
be evaluated to ((P − 1)/P ) · |E|, since statistically only |E|/P edges will be
local to a node. Hence, the message complexity is O(|E|), the worst-case being
obtained with two messages (expansion and stabilization) exchanged per cross-
dependency, i.e., at most 2 · ((P − 1)/P ) · |E| messages. Our Dtd algorithm has
the same worst-case message complexity, but in practice it reveals to be very
efficient, with only 0.01% of total exchanged messages used for Dtd; this is due
to the supervisor, which has an up-to-date global view of the computation.

3 Applications

We illustrate in this section the application of the Mb-DSolve algorithm on two
analysis problems defined on Labeled Transition Systems (Ltss): model checking
of alternation-free μ-calculus formulas and generation of conformance test cases.
An Lts is a tuple (S, A, T, s0) containing a set of states S, a set of actions A,
a transition relation T ⊆ S × A × S and an initial state s0 ∈ S. A transition
(s, a, s′) ∈ T , noted also s

a→ s′, states that the system can move from state s
to state s′ by executing action a (s′ is an a-successor of s). Both problems can
be formulated as the resolution of a multiple block, alternation-free Bes, the
second one essentially relying upon diagnostic generation for Bess. By applying
Mb-DSolve as Bes resolution engine, we obtain distributed versions of the
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on-the-fly model checker Evaluator 3.5 [26] and the on-the-fly test generator
Tgv [16] of the Cadp toolbox [11].

3.1 Model Checking for Alternation-Free Mu-Calculus

Modal μ-calculus [19] is a powerful fixed point based logic for specifying temporal
properties on Ltss. Its formulas are defined by the following grammar (where X
is a propositional variable):

φ ::= false | true | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a] φ | X | μX.φ | νX.φ

Given an Lts (S, A, T, s0), a formula φ denotes a set of states, defined as follows:
boolean formulas have their usual set interpretation; modalities 〈a〉φ (resp. [a] φ)
denote the states having some (resp. all) a-successors satisfying φ; fixed point
formulas μX.φ (resp. νX.φ) denote the minimal (resp. maximal) solution of
the equation X = φ, interpreted over 2S . The local model checking problem
amounts to establish whether the initial state s0 of an Lts satisfies a formula φ,
i.e., belongs to the set of states denoted by φ.

The alternation-free fragment of the modal μ-calculus, noted L1
μ [8], is ob-

tained by forbidding mutual recursion between minimal and maximal fixed point
variables. L1

μ benefits from model checking algorithms whose complexity is lin-
ear in the size of the Lts (number of states and transitions) and the formula
(number of operators), while still allowing to express useful properties, since it
subsumes Ctl [6] and Pdl [9]. The model checking of L1

μ formulas on Ltss can
be encoded as the resolution of an alternation-free Bes [1]. We illustrate the
encoding by considering the following formula, which states that the emission
snd of a message is eventually followed by its reception rcv (‘−’ stands for ‘any
action’ and ‘a’ stands for ‘any action different from a’):

νX.([snd ] μY.(〈−〉 true ∧ [rcv ] Y ) ∧ [−] X)

The formula is translated first into a specification in Hml with recursion [20],
which contains two blocks of modal equations:

{X ν= [snd ] Y ∧ [−]X}, {Y μ
= 〈−〉 true ∧ [rcv ] Y }

Then, each modal equation block is converted into a boolean equation block by
‘projecting’ it on each state of the Lts:

{Xs
ν=

∧
s
snd→s′Ys′ ∧

∧
s→s′Xs′}s∈S, {Ys

μ
=

∨
s→s′true ∧

∧
s�rcv→s′Ys′}s∈S

A boolean variable Xs (resp. Ys) is true iff state s satisfies the propositional vari-
able X (resp. Y ). Thus, the local model checking of the initial formula amounts to
compute the value of variable Xs0

by applying a local Bes resolution algorithm.
This method underlies the on-the-fly model checker Evaluator 3.5 [29, 26] of
Cadp [11], which handles formulas of L1

μ extended with Pdl-like modalities
containing regular expressions over transition sequences.
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3.2 Conformance Test Case Generation

Conformance testing aims at establishing that the implementation under test
(Iut) of a system is correct w.r.t. a specification. We consider here the con-
formance test approach advocated in the pioneering work underlying the Tgv
tool [16]. We give only a brief overview of the theory used by Tgv and focus
on the algorithmic aspects of test selection, with the objective of reformulating
them in terms of Bes resolution and diagnostic generation.

The Iut and the specification are modelled as Input-output Ltss (IoLtss),
which distinguish between inputs and outputs: e.g., the actions of the IoLts of
the specification M = (SM , AM , T M , sM

0 ) are partitioned into AM = AM
I ∪AM

O ∪
{τ}, where AM

I (resp. AM
O ) are input (resp. output) actions and τ is the internal

(unobservable) action. Intuitively, input actions of the Iut are controllable by
the environment, whereas output actions are only observable. In practice, tests
observe the execution traces consisting of observable actions of the Iut, but can
also detect quiescence, which can be of three kinds: deadlock (states without
successors), outputlock (states without outgoing output actions), and livelock
(cycles of internal actions). For an IoLts M , quiescence is modelled by a sus-
pension automaton Δ(M), an IoLts which marks quiescent states by adding
self-looping transitions labeled by a new output action δ. The traces of Δ(M)
are called suspension traces of M . The conformance relation ioco [33] between
the Iut and the specification M states that after executing each suspension trace
of M , the (suspension automaton of the) Iut exhibits only those outputs and
quiescences that are allowed by M .

Test generation requires a determinization of M , since two sequences with
the same traces of observable actions cannot be distinguished. Since quiescence
must be preserved, determinization must take place after the construction of the
suspension automaton Δ(M).

A test case is an IoLts TC = (STC , ATC , T TC , sTC
0 ) equipped with three

sets of trap states Pass∪Fail∪Inconc ⊆ STC denoting verdicts. The actions of
TC are partitioned into ATC = ATC

I ∪ ATC
O , where ATC

O ⊆ AM
I (TC emits only

inputs of M) and ATC
I ⊆ AIUT

O ∪ {δ} (TC captures outputs and quiescences of
the Iut). A test case must satisfy several structural properties, detailed in [16].

The test generation technique of Tgv is based upon test purposes, which
allow to guide the test case selection. A test purpose is a deterministic and
complete IoLts TP = (STP , ATP , T TP , sTP

0 ), with the same actions as the
specification ATP = AM , and equipped with two sets of trap states AcceptTP and
RejectTP , which are used to select targeted behaviours and to cut the exploration
of M , respectively. Here we focus on the computation of the complete test graph
(Ctg), which contains all test cases corresponding to a specification and a test
purpose, and therefore can serve as a criterion for comparison and performance
measures. Controllable test cases can be produced from a Ctg by applying
specific algorithms [16].

The Ctg is produced by Tgv as the result of three operations, all performed
on-the-fly: (a) computation of the synchronous product SP = M ×TP between
the IoLtss of the specification and the test purpose, in order to mark accepting
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and refusal states; (b) suspension and determinization of SP, leading to SPvis =
det(Δ(SP)), which keeps only visible behaviours and quiescence; (c) selection of
the test cases denoting the behaviours of SPvis accepted by TP, which form the
Ctg. The main operation (c) roughly consists in computing L2A (lead to accept),
the subset of the states of SPvis from which an accepting state is reachable,
checking whether the initial state of SPvis belongs to L2A (which indicates the
existence of a test case), and defining, based upon L2A, the sets Pass, Fail, and
Inconc corresponding to the verdicts. This is the operation we chose to encode
as a Bes resolution with diagnostic.

Assuming that the accepting states of SPvis are marked by self-looping tran-
sitions labeled by an action acc (as it is done in practice), the reachability of an
accepting state is denoted by the following μ-calculus formula:

φacc = μY.(〈acc〉 true ∨ 〈−〉Y )

The set L2A contains all states satisfying φacc . It can be computed in a back-
wards manner by using a fixed point iteration to evaluate φacc on SPvis . Since
this requires the prior computation of SPvis , we seek another solution suitable
for on-the-fly exploration, by considering the formula below:

φl2a = νX.(φacc ∧ [−] (φacc ⇒ X))

Formula φl2a has the same interpretation as φacc , meaning that its satisfaction
by the initial state of SPvis denotes the existence of a test case. Moreover, the
on-the-fly evaluation of φl2a on a state s satisfying φacc requires the inspection
of every successor s′ of s and, if it satisfies φacc, the recursive evaluation of φl2a

on s′, etc., until all states in L2A have been explored.
The Ctg could be obtained as the diagnostic produced by an on-the-fly

model checker (such as Evaluator) for the formula φl2a . However, to annotate
the Ctg with verdict information and to avoid redundancies caused by the two
occurrences of φacc present in φl2a , a finer-grained encoding of the problem in
terms of a Bes resolution with diagnostic is preferred. The corresponding Bes
denotes the model checking problem of φl2a on SPvis , by applying the translation
given in Section 3.1 (s, s′ are states of SPvis):

{Xs
ν= Ys ∧

∧
s→s′(Zs′ ∨ Xs′)}, {Ys

μ
=

∨
s
acc→s′true ∨

∨
s→s′Ys′},

{Zs
ν=

∧
s
acc→s′ false ∧

∧
s→s′Zs′}

If Xsvis
0

is true, then a positive diagnostic (example) can be exhibited in the form
of a boolean subgraph [25] containing, for each conjunctive variable (such as Xs

and Zs), all its successor variables, and for each disjunctive variable (such as
Ys) only one successor which evaluates to true. This diagnostic can be obtained
by another forward traversal of the boolean graph portion already explored for
evaluating Xsvis

0
. We turn the diagnostic into a Ctg in the following manner:

we associate a state of the Ctg to each variable Xs; we produce an accepting
transition going out of Xs only if the first subformula in the right-hand side of the
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equation defining Ys is true (i.e., s has an acc-successor); we produce a transition
Xs

a→ Xs′ for each state s′ such that Zs′ is false. Note that the diagnostic for
variables Zs does not need to be explored. Additional verdict information in the
form of refuse and inconclusive transitions is produced in a similar way during
diagnostic generation, since the information needed for verdicts in the Ctg is
local w.r.t. states of L2A [16].

In the discussion above, formula φl2a was evaluated on the IoLts SPvis ob-
tained after suspension and determinization of SP; however, these two operations
can also be performed after test case selection. In other words, the Bes based
generation procedure sketched above can be applied directly on the synchronous
product SP between the specification and the test purpose, producing a ‘raw’
Ctg, which is subsequently suspended and determinized to yield the final Ctg.
This procedure underlies the Extractor tool we developed within Cadp for
producing raw Ctgs, which are then processed by the Determinator tool [12],
resulting in Ctgs strongly bisimilar to those produced by Tgv. Although this
ordering of operations is not the most efficient one for sequential on-the-fly test
case generation (since the IoLts of the specification can contain large amounts
of τ -transitions), it appears to be suitable in the distributed setting, because it
leads to large Bess, which are solved efficiently by using Mb-DSolve.

4 Implementation and Experiments

The model checker Evaluator 3.5 [29, 26] and the test case generator
Extractor (see Figure 3) have been developed within Cadp [11] by using
the generic Open/Cæsar environment [10] for on-the-fly exploration of Ltss.

Evaluator (resp. Extractor) consists of two parts: a front-end, respon-
sible for encoding the verification of the L1

μ formula (resp. the test selection
guided by the test purpose Lts2) on Lts1 as a Bes resolution, and for produc-
ing a counterexample (resp. a Ctg) by interpreting the diagnostic provided by
the Bes resolution; and a back-end, responsible of Bes resolution, playing the
role of verification engine.

Sequential and distributed versions of Evaluator and Extractor are
obtained by using as back-end either the sequential algorithms of the
Cæsar Solve library [26, 28], or the Mb-DSolve algorithm, respectively.

Mb-DSolve (15 000 lines of C code) is a conservative extension of the
distributed resolution algorithm DSolve [18] for single block Bess and was
implemented by using the Open/Cæsar environment. The size of the worker
and supervisor processes is roughly the double in Mb-DSolve w.r.t. DSolve.
For communication, Mb-DSolve is based on the Cæsar Network library
of Cadp, which offers a set of 40 primitives finely-tuned for verification prob-
lems, such as non-blocking asynchronous emission/reception of messages through
Tcp/Ip sockets and explicit memory management by means of bounded com-
munication buffers.

We present in this section experimental measures comparing the distributed
versions of Evaluator and Extractor with their sequential counterparts and
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Fig. 3. The distributed on-the-fly tools Evaluator and Extractor

(as regards Extractor) with the Tgv test case generator, and (as regards
Evaluator) with the UppDmc distributed model checker.

4.1 Performance of Distributed Model Checking

We begun our experiments by checking two simple properties expressed in modal
μ-calculus, namely absence of deadlock (νX. (〈−〉 true ∧ [−]X)) and presence of
livelock (μX. (νY. (〈τ〉 Y )∨〈−〉X)), on a cluster of 21 Xeon 2.4 GHz Pcs, with
1.5 Gb of Ram, running Linux, and interconnected by a 1 Gigabit Ethernet
network. These properties were checked on the nine largest Ltss of the Vlts
benchmark. Figure 4 shows the speedup (a) and memory ratio (b) between dis-
tributed Evaluator and its sequential optimized version based on the reso-
lution algorithms for disjunctive/conjunctive Bess present in Cæsar Solve.
Each point on each curve represents the average of ten experiments excluding
the minimum and extremum values. The sequential version is very fast in finding
counterexamples (e.g., for vasy 2581 11442, vasy 4220 13944, vasy 4338 15666,
vasy 6120 11031, vasy 11026 24660, and vasy 12323 27667 which contain dead-
locks), as can be observed with the six lower speedup curves close to x-axis on
Figure 4 (a). However, when it is necessary to explore the underlying Bes entirely
(e.g., for cwi 7838 59101 and vasy 6020 19353 which do not contain deadlocks),
the distributed version becomes interesting, allowing close to linear speedups
and a good scalability as the number of workers increases.

The (slightly) super linear speedups are due to the use of hash tables for
storing sets of boolean variables. Since the balancing of these tables is not perfect,
some collision lists tend to become large; the effect of this phenomenon is stronger
on the sequential version of the tool (which uses a single large hash table) than
on its distributed version (which uses P smaller tables).
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The memory overhead (see Figure 4 (b)) of the distributed version is not re-
ally affected by an increasing number of workers and remains low, with a memory
consumption averaged over all nodes around 5 times bigger than the sequential
one. Moreover, we observed almost no idle time, the distributed computation us-
ing systematically around 99% of the Cpus capacity on each worker node. This
is partly a consequence of the well-balanced data partitioning induced by the
static hash function, and indicates a good overlapping between communications
and computations.

We have also compared time and memory performances of distributed
Evaluator against the UppDmc model checker based on game graphs. Re-
sults are given in Table 1, where each of the seven Vlts examples considered
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Evaluator when checking absence of deadlock
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Table 1. Execution time (in seconds) and memory consumption (in Mb) of two dis-
tributed on-the-fly model checkers: UppDmc (U) with 25 bi-Pentium III nodes and
Evaluator (E) with 21 Xeon nodes

Example absence of deadlock presence of livelock
truth U (s) U (MB) E (s) E (MB) truth U (s) U (MB) E (s) E (MB)

vasy 2581 11442 false 44 461 2 272 false 47 n.c. 7 844
vasy 4220 13944 false 56 726 21 294 false 67 n.c. 622 1 149
vasy 4338 15666 false 64 745 2 313 false 64 n.c. 11 1 203
vasy 6020 19353 true 59 1 085 24 1 239 true 125 n.c. 8 1 442
vasy 6120 11031 false 95 947 1 170 false 108 n.c. 13 1 092
cwi 7838 59101 true 149 1 531 46 2 298 true 314 n.c. 16 2 793
vasy 8082 42933 false 162 1 374 2 268 false 134 n.c. 24 2 401

(e.g., vasy 2581 11442, an Lts with 2 581 · 103 states and 11 442 · 103 transi-
tions) is checked for deadlock and livelock. Distributed Evaluator is very fast
in detecting counterexamples, which explains most of the improvements in time
and memory compared to UppDmc running two threads on 25 bi-Pentium III
500 MHz, with 512 Mb of Ram. When the whole Bes (resp. game graph) has
to be explored (e.g., for vasy 6020 19353), the execution time is closer to that
of UppDmc, but always remains between 2 and 8 times lower. In this case,
the memory consumption of distributed Evaluator is slightly greater w.r.t.
UppDmc; this is due to the simple data structures used for storing backward
dependencies (linked lists) and could be reduced by using more compact data
structures (e.g., packet lists).

We further experimented the scalability of distributed Evaluator by con-
sidering Ltss of increasing size and more complex properties taken from the
Cadp demos2. For instance, we used the following formula, stating that after a
put action, either a livelock, or a get action will be eventually reached:

νX. ([put ]μY. ((νZ. 〈τ〉Z ∨ (〈−〉 true ∧
[
get

]
false)) ∨ (〈−〉 true ∧ [−] Y )) ∧ [−]X)

We checked that this property is satisfied by an Lts named b256 with 6 067 712
states and 19 505 146 transitions, modelling the behaviour of a communica-
tion protocol that exchanges 256 different messages. The sequential version of
Evaluator (based on the Dfs resolution algorithm of Cæsar Solve) took
around 15 minutes to perform the check, whereas the distributed version run-
ning on 10 nodes converged in 90 seconds, thus achieving a speedup close to 10.

4.2 Performance of Distributed Conformance Test Case Generation

We experimented the generation of conformance test cases by using a generic
test purpose, which states that an accepting state must be reachable after 10
visible actions. Table 2 shows the performance (in time and memory) of Tgv
and sequential Extractor for generating Ctgs from this test purpose and five
Ltss from the Vlts benchmark, together with the Lts b256 previously used for
model checking. The table also gives the size of the resulting Ctgs; note that
2 http://www.inrialpes.fr/vasy/cadp/demos.html
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Table 2. Performance analysis of Tgv and sequential Extractor on six Ltss with a
generic test purpose

Tgv (sequential) Extractor
Example time Mb states trans. time % Mb % states trans.
vasy 164 1619 15’8s 242 100 319 231 266 3’47s 75 210 13 438 861 2 982 696
vasy 166 651 20’23s 242 170 657 586 602 1’41s 92 113 53 444 542 1 504 985
cwi 371 641 6’5s 1600 125 894 597 445 5’20s 12 310 81 1 912 260 3 163 177
vasy 386 1171 9s 11 3 319 3 892 7s 22 10 9 5 561 6 324
vasy 1112 5290 23s 33 10 827 20 888 13s 44 28 15 15 008 41 225
b256 597’4s 2322 264 194 854 786 139’22s 77 2772 -2 12 139 232 39 020 231

the raw Ctgs generated by Extractor contain τ -transitions, which explains
their difference in size w.r.t. the Ctgs produced by Tgv.

Table 3 gives time and memory measures obtained with distributed
Extractor on the same six Ltss. The raw Ctgs generated by this tool are
exactly the same as its sequential counterpart, since both tools share the same
front-end encoding the problem of test case generation. The raw Ctgs are sub-
sequently suspended and determinized using Determinator [12], yielding final
Ctgs strongly equivalent to those produced by Tgv (this was checked using the
Bisimulator [4] tool). The table also gives time and memory measures, as well
as final Ctg sizes obtained by applying Determinator.

From the measures shown in these two tables, we obtain a speedup of 1.82
of sequential Extractor combined with Determinator w.r.t. Tgv. However,
Tgv compares favourably as regards the size of the final Ctgs, which is between
30% and 50% smaller. This limitation, although not very significant (the Ctgs
produced by Extractor and Determinator can be subsequently reduced
modulo strong equivalence), can be partially overcome by adding on-the-fly re-
ductions, such as compression of τ -cycles [27], during the computation of the
synchronous product between the Lts and the test purpose.

Distributed Extractor exhibits significant speedups w.r.t. its sequential
version as regards the resolution of the underlying Bes, and also a good scal-

Table 3. Performance analysis of (distributed) Extractor (7 nodes) and final Ctg
construction by Determinator

(distributed) Extractor Determinator
Example time Mb time Mb states (final) transitions (final)
vasy 164 1619 4’39s 470 4’40s 55 103 658 975 594
vasy 166 651 2’59s 335 2’27s 50 173 259 801 675
cwi 371 641 12’4s 880 25’8s 185 127 218 777 278
vasy 386 1171 16s 104 15s 6 2 452 3 894
vasy 1112 5290 27s 228 17s 7 8 369 41 225
b256 180’ 6127 19’ 459 527 875 1 709 058
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ability: the resolution on 16 machines of the Bes corresponding to the generic
test purpose and the Lts b256 was done in less than 372 seconds, whereas se-
quential Extractor took around 30 minutes (five times slower). This example
was handled by Tgv in more than 597 minutes, which is four times slower than
sequential Extractor combined with Determinator.

Finally, some experiments were performed successfully by Extractor and
Determinator, but not by Tgv. Table 4 shows two Ltss from the Vlts bench-
mark, on which the Ctg generation for the generic test purpose using Tgv
leads to memory shortage (consumption of more than 3 Gb of memory). On
the contrary, Extractor concluded in 8 seconds that no test case was present
in cwi 214 684 and, together with Determinator, computed the final (very
small) Ctg contained in cwi 566 3984.

Table 4. Specification examples on which Tgv fails due to memory shortage

Example M states M trans. Extractor + Determinator
cwi 214 684 214 684 8 s., 19 Mb, no test case
cwi 566 3984 566 3 984 1195 s., 145 Mb, (32 states, 49 trans.)

5 Conclusion and Future Work

Building efficient and generic verification components is crucial for facilitat-
ing the development of robust explicit-state analysis tools. Our Mb-DSolve
algorithm for distributed on-the-fly resolution of multiple block, alternation-
free Bess, goes towards this objective. Mb-DSolve was designed to be com-
pliant with the interface of the Bes resolution library Cæsar Solve [26, 28],
thus being directly available as verification back-end for all analysis tools based
on Cæsar Solve. Here we illustrated its application for alternation-free
μ-calculus model checking and conformance test generation, as distributed com-
puting engine for the tools Evaluator [29, 26] and Extractor, developed
within Cadp [11] using the generic Open/Cæsar environment [10] for Lts
exploration.

The modular architecture of these tools does not penalize their performance.
Our experiments using large state spaces from the Vlts benchmarks have shown
that distributed Evaluator compares favourably in terms of speed and mem-
ory with UppDmc, the other existing distributed on-the-fly model checker for
μ-calculus based on game graphs [13]. Moreover, distributed Evaluator ex-
hibits a good speedup and scalability w.r.t. its sequential version, relying on the
optimized algorithms of Cæsar Solve for disjunctive/conjunctive Bess. Dis-
tributed Extractor, to our knowledge the first tool performing distributed
on-the-fly conformance test generation, allows to scale up the capabilities of
well-established dedicated tools, such as Tgv [16].

We plan to continue our work along several directions. First, we will study
other distributed resolution strategies, aiming at reducing memory consumption
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for disjunctive/conjunctive Bess, which occur frequently in practice [26]: one
such strategy could combine a distributed breadth-first and a local depth-first
exploration of the boolean graph. Next, we will seek distributed solutions to
other problems, such as discrete controller synthesis and Horn clause resolution,
by investigating their translation in terms of Bess resolution with diagnostic.
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Abstract. C Bounded Model Checking (CBMC) has proven to be a
successful approach to automatic software analysis. The key idea is to
(i) build a propositional formula whose models correspond to program
traces (of bounded length) that violate some given property and (ii) use
state-of-the-art SAT solvers to check the resulting formulae for satisfia-
bility. In this paper we propose a generalisation of the CBMC approach
based on an encoding into richer (but still decidable) theories than propo-
sitional logic. We show that our approach may lead to considerably more
compact formulae than those obtained with CBMC. We have built a pro-
totype implementation of our technique that uses a Satisfiability Modulo
Theories (SMT) solver to solve the resulting formulae. Computer experi-
ments indicate that our approach compares favourably with and on some
significant problems outperforms CBMC.

1 Introduction

SAT-based Bounded Model Checking (BMC) [1] was originally proposed as a
complementary technique to OBDD-based model checking for the automatic
analysis of finite state systems (e.g. hardware circuits). The key idea is to build
a propositional formula whose models correspond to behaviours of the system
that violate a given property.

The application of Bounded Model Checking to software poses new chal-
lenges, as most programs are inherently infinite-state and new, non trivial issues
such as the handling of (recursive) function calls and the modelling of complex
data structures must be properly addressed. An elegant solution to the prob-
lem is proposed in [2, 3] and implemented in the CBMC (C Bounded Model
Checking) model checker. The approach amounts to (i) building a propositional
formula whose models correspond to program traces (of bounded length) violat-
ing some given property and (ii) using state-of-the-art SAT solvers to check the
resulting formulae for satisfiability.

In this paper we propose a generalisation of the CBMC approach. Instead of
encoding the program into a propositional formula, we encode it into a quantifier-
free formula to be checked for satisfiability w.r.t. some given decidable theory

A. Valmari (Ed.): SPIN 2006, LNCS 3925, pp. 146–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(henceforth called background theory) and use a state-of-the-art SMT (Satisfia-
bility Modulo Theories) solver to perform the satisfiability checking.

We show that our approach may lead to considerably more compact formulae
when arrays are involved in the input program. In particular the size of the
formulae generated by our approach does not depend on the size of the bit-vector
representation of the basic data types nor on the size of the arrays occurring in
the program, whereas the encoding technique implemented in CBMC depends
on both.

Experimental results obtained with a prototype implementation of our tech-
nique, called smt-cbmc, confirm the effectiveness of our approach: on a number
of problems involving complex interactions of arithmetics and arrays manipula-
tion CBMC generates formulae whose size makes the solving phase impractical.
On the other hand, smt-cbmc scales significantly better than CBMC as the size
of the arrays occurring in the input program increases.

Structure of the Paper. In the next section (Section 2) we provide a brief intro-
duction to SMT and present a set of decidable theories that we will refer to in
the rest of the paper. In Section 3 we present our generalisation to the CBMC
approach: we describe the generation of the formula, the different approaches
to solve the formula, and how error traces are reconstructed by exploiting the
information returned by the SMT solver. In Section 4 we describe our prototype
tool smt-cbmc and present the experimental results. In Section 5 we discuss the
related work and finally, in Section 6, we draw some concluding remarks.

2 Satisfiability Modulo Theories

Given a decidable theory T and a quantifier-free formula φ in the same language
as T , we say that φ is T -satisfiable if and only if there exists a model of T which
is also a model of φ or, equivalently, if T ∪{φ} is satisfiable. A SMT solver for T
is a program capable of determining the T -satisfiability of every quantifier-free
formula φ in the same language as T . Let Γ ∪ {φ} be a set of formulae in the
same language as T , we say that φ is a T -consequence of Γ , in symbols Γ |=T φ,
if and only if every model of T ∪ Γ is a model of φ. Obviously, the problem of
determining whether C |=T φ holds can be reduced to the problem of checking
the T -satisfiability of C ∪ {¬φ}.

Over the last three decades, a great deal of attention has been paid to solv-
ing the SMT problem for a number of (decidable) theories of interest such as,
e.g., Linear Arithmetics, the theory of lists, the theory of arrays, and—more
recently—the theory of bit-vectors. The practical relevance of these theories in
verification cannot be overestimated as arithmetics, lists, arrays, and bit-vectors
are ubiquitous in Computer Science. Moreover, since these entities rarely occur
in isolation, the problem of building SMT solvers for the combination of two (or
more) decidable theories (say T1 ∪ T2) out of SMT solvers for the component
theories (say T1 and T2) has also been thoroughly investigated and solutions
identified [4, 5]. More recently the problem of combining the effectiveness of
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state-of-the-art SAT solvers with SMT solvers has received growing attention
and has led to a new generation of SMT solvers capable of remarkable perfor-
mance [6].

In the rest of this section we give a brief description of the decidable theories
that are relevant for the present paper.

Linear Arithmetics. By Linear Arithmetics we mean standard arithmetics (either
over Z, Q, or R) with addition (i.e. +) and the usual relational operators (e.g. =,
<, ≤, >, ≥) but without multiplication. Multiplication by a constant, say n ∗ x
where n is a numeral, is usually allowed but it is just a notational shorthand for
the (linear) expression x + · · · + x with n occurrences of the variable x.

The Theory of Arrays. Arrays are data structures representing arbitrary as-
sociations of elements to a set of indexes. Unlike arrays available in standard
programming languages, the arrays modelled by the theory of arrays need not
have finite size. Given sorts index, elem and array for indices, elements,
and arrays (resp.) and function symbols select : array × index → elem and
store : array×index×elem → array, the standard presentation of the theory
of arrays consists of the following two axioms:

∀a, i, e. select(store(a, i, e), i) = e

∀a, i, j, e. (i �= j ⊃ select(store(a, i, e), j) = select(a, j))

with variable a of sort array, i and j of sort index, and e of sort elem.
SMT solvers for the theory of arrays are described in [7, 8].

The Theory of Records. Records are data structures that aggregate attribute-
value pairs. Let Id = {id1, . . . , idn} be a set of field identifiers and t1, . . . ,tn

be types, rec(id1 : t1, . . . , idn : tn), henceforth abbreviated rec, is the sort
of records that associate an element of type tk to the field identifier idk, for
k = 1, . . . , n. The signature of the theory of records consists of a pair of function
symbols rselectk : rec → tk and rstorek : rec × tk → rec for k = 1, . . . , n.
The theory is finitely presented by the following axioms:

∀r, e. rselectk(rstorek(r, e)) = e for k = 1, . . . , n

∀r, e. rselectl(rstorek(r, e)) = rselectl(r) for k, l such that 1 ≤ k �= l ≤ n

where r has sort rec and e has sort ti.
A SMT solver for the theory of records is described in [9].

The Theory of Bit-Vectors. Similarly to arrays, bit-vectors associate elements
to a set of indexes, but unlike arrays the set of indexes is finite. Moreover the
element associated to each index is boolean valued. Many theories of bit-vectors
have been proposed in the literature [10, 11, 12, 13, 14], the main difference being
whether bit-vectors are allowed to have variable size or not. For our purposes,
the theory of fixed-size bit-vectors does suffice. The theory we consider has a
sort bv(n) for each positive integer n and a rich family of functions symbols
consisting of



BMC of Software Using SMT Solvers Instead of SAT Solvers 149

– word-level functions, e.g. [i:j] : bv(m) → bv(j − i + 1) (bit-vector extrac-
tion) for 0 ≤ i ≤ j ≤ m, @ : bv(m) × bv(n) → bv(m + n) (bit-vector
concatenation) for m, n > 0;

– bitwise functions, e.g.˜: bv(n) → bv(n) (bitwise not), & : bv(n) × bv(n) →
bv(n) (bitwise and), | : bv(n) × bv(n) → bv(n) (bitwise or) for n > 0;

– arithmetic functions, e.g. + : bv(n) × bv(n) → bv(n) (addition modulo 2n)
for n > 0.

3 Bounded Model Checking of Sequential Software

As in [2], preliminarily to the generation of the formula, we preprocess the in-
put program (Section 3.1). Given a bound n > 0, this amounts to applying a
number of transformations which lead to a simplified program whose execution
traces have finite length and correspond to the (possibly truncated) traces of the
original program. The quantifier-free formula is then obtained by generating a
quantifier-free formula for each statement of the resulting program (Section 3.2)
and the resulting formula is fed to a SMT solver (Section 3.3). If an execution
path leading to a violation of an assert statement occurring in the original pro-
gram is detected, then a corresponding trace is built and returned to the user
for inspection (Section 3.4).

In order to simplify the presentation, we assume that = is the only assignment
operator occurring in the program and that no pointer variables nor conditional
expressions occur in the program. Notice that all these simplifying assumptions
can be readily lifted as in [15].

3.1 The Preprocessing Phase

The preprocessing activity starts by replacing break and continue statements
with semantically equivalent goto statements. The switch construct is replaced
by a proper combination of if and goto statements. Loops are then unwound
by reducing them to a sequence of nested if statements. For instance, while
loops are removed by applying the following transformation n times:

while(e){ I } −→ if(e){ I while(e){ I }}

The last while loop is finally replaced by the statement assert(! e);, called
unwinding assertion. The failure of an unwinding assertion indicates that the
bound n is not sufficient to model the system and the properties entirely, and
that n must be increased.

Non recursive functions are then inlined. Recursive function calls and back-
ward goto’s are unwound similarly to loop statements. Forward goto statements
are transformed into equivalent if statements as explained in [1].

Next we put the program in Single Assignment Form [16] by renaming its
variables in the following way. Let v be a program variable and i a program
location. We define α(v, i) to be the number of assignments made to v prior
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to location i. Let e be a program expression. With �(e) we denote the ex-
pression obtained from e by substituting every variable v in e with vα(v,i).
Every assignment to a variable x at a given location i, say x=e, is replaced
by xα(x,i)+1=�(e). Every assignment to an array element, say a[e1]=e2, is re-
placed by aα(a,i)+1[�(e1)]=�(e2). Every condition c (also called guard) of an if
statement is replaced by �(c).

Then we put the program in conditional normal form by invoking the nor-
malisation algorithm of Fig. 1 with G = true and by applying to G the usual
simplifications. This normalisation step removes the else constructs and pushes
the if statements downwards in the abstract syntax tree of the program till they
are applied to atomic statements only. An example of the transformation of a
program in conditional normal form is given in Fig. 2.

Notice that a program in conditional normal form is a sequence of state-
ments of the form if(c) s; where s is either an assignment or an assert
statement.

Let P ′ be the program that is input to the normalisation algorithm, let n
be the number of assert and assignment statements in P ′, and let m be the
maximum number of atomic formulae occurring in the if guards. In the worst

procedure Normalise(P ,G)
if P is an assignment or an assert statement then

return if(G) P;
else if P = (if(c) P1;) then

return Normalise(P1,G && c)
else if P = (if(c) P1;else P2;) then

return Normalise(P1,G && c);Normalise(P2,G &&(! c))
else if P = (P1; P2) then

return Normalise(P1,G);Normalise(P2,G)
end if

end procedure

Fig. 1. Turning the program in conditional normal form

i = a[0];
if(x>0){
if(x<10)
x=x+1;

else
x=x-1;

}
assert(y>0 && y<5);
a[y]=i;

i1 = a0[0];
if(x0>0){
if(x0<10)
x1=x0+1;

else
x2=x1-1;

}
assert(y0>0 && y0<5);
a1[y0]=i1;

if(true) i1 = a0[0];
if(x0>0 && x0<10) x1=x0+1;
if(x0>0 && !(x0<10)) x2=x1-1;
if(true) assert(y0>0 && y0<5);
if(true) a1[y0]=i1;

(a) (b) (c)

Fig. 2. Turning a program in conditional normal form: (a) the original program, (b)
the renamed program, and (c) the normalised program
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case, the program output by the normalisation algorithm contains n assert
and assignment statements guarded by n if guards each of which has at most
m · log2(n−1) atomic formulae. In fact, in the worst case P ′ is made of n assert
and assignment statements and n − 1 nested if . . . else . . . statements, that is,
there are n − 1 guards in P ′, each of which contains m atomic formulae.

3.2 The Encoding Phase

The application of the previous transformations leaves us with a renamed pro-
gram P in conditional normal form. We now show how to build two sets of
quantifier-free formulae C and P such that C |=T

∧
P for some given back-

ground theory T if and only if no computation path of P violates any assert
statement in P .

For each statement in P of the form if(c) vj+1=e; C contains a formula of
the form:1

vj+1 = (c′ ? e′ : vj)

where c′ and e′ are obtained from c and e respectively by replacing every ex-
pression of the form al[e] with select(al, e). Similarly, for each statement in P
of the form if(c) aj+1[e1]=e2; C contains a formula of the form:

aj+1 = (c′ ? store(aj , e
′
1, e

′
2) : aj) (1)

where c′, e′1, and e′2 are obtained from c, e1, and e2 respectively by substituting
every expression of the form al[e] with select(al, e).

The set P contains a formula of the form (c′ ⊃ e′) for each statement in
P at location i of the form if(c) assert(e);, where c′ and e′ are obtained
from c and e respectively by replacing every expression of the form al[e] with
select(al, e).

C = { i1 = (true ? select(a0, 0) : i0),

x1 = ((x0 > 0 ∧ x0 < 10) ? x0 + 1 : x0),

x2 = ((x0 > 0 ∧ ¬(x0 < 10)) ? x1 − 1 : x1),

a1 = (true? store(a0, y0, i1) : a0)}
P = {true ⊃ (y0 > 0 ∧ y0 < 5)}

Fig. 3. The sets of formulae C and P for the program in Fig. 2

1 We use the expression v = (c ? e1 : e2) as an abbreviation for the formula (c ⊃ v =
e1) ∧ (¬c ⊃ v = e2).
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3.3 Solving the Formula

Solving the Formula with a SAT Solver. In [2] this problem is reduced
to a propositional satisfiability problem which is then fed to the Chaff SAT
solver [17]. This is done by modelling variables of basic data types (e.g. int
and float) as fixed-size bit-vectors and by considering the equations in C and
in P as bit-vectors equations. Each array variable a is also replaced by dim(a)
distinct variables a0, . . . , adim(a)−1 and each formula of the form (1) occurring
in C is replaced by the formula

dim(a)−1∧
i=0

ai
j+1 = ((c ∧ e1 = i) ? e2 : ai

j).

Finally each term of the form select(aj , e) is replaced by a new variable, say x,
and the following formulae are added to C

dim(a)−1∧
i=0

((e = i) ⊃ x = ai
j)

The resulting set of bit-vector equations are then turned into a propositional
formula. Variables of struct types are treated in a similar way. Notice that
the size of the propositional formula generated in this way depends (i) on the
size of the bit-vector representation of the basic data types as well as (ii) on
the size of the arrays used in the program. It is worth pointing out that if the
program contains a multi-dimensional array a with dimensions d1, . . . , dm, then
the number of added formulae grows as O (d1 · d2 · . . . · dm).

Solving the Formula with a SMT Solver. The alternative approach pro-
posed in this paper is to use a SMT solver to directly check whether C |=T

∧
P .

By proceeding in this way the size of the formula given as input to the SMT
solver does not depend on the size of the bit-vector representation of the basic
data types nor on the size of the arrays occurring in the program.2 Moreover
the use of a SMT solver gives us additional freedom in the way we model the
basic data types. In fact, program variables with numeric type (e.g. int, float)
can be modelled by variables ranging over bit-vectors or over the corresponding
numerical domain (e.g. Z, R, resp.). If the modelling of numeric variables is done
through fixed-size bit-vectors, then the result of the analysis is precise but it de-
pends on the specific size considered for the bit-vectors. If, instead, the modelling
of numeric variables is done through the corresponding numerical domain, then
the result of the analysis is independent from the actual binary representation,

2 It must be said that SMT solvers for the theory of bit-vectors may expand parts of
the the formula by a technique known as bit-blasting, however this is usually done
as a last resort and in many cases higher level and less expensive techniques are
enough to solve the problem at hand [14].
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but this comes to the price of losing completeness of the analysis if non linear
expressions occur in the program.

In order to check check whether C |=T
∧
P , we use CVC Lite [18], a decision

procedure that determines the validity of quantifier-free first-order formulae over
the union of several theories.

3.4 Building the Error Trace

Whenever CVC Lite is asked to determine whether Γ |=T φ, but this does not
hold, the tool returns a finite set of formulae K such that Γ,K |=T ¬φ. The set
of formulae K is said to be a counterexample for Γ |=T φ.

Let K be a counterexample for C |=T
∧
P . We have defined a procedure that

builds an error trace witnessing the violation of an assert statement occurring
in the program P . The procedure (shown in Figure 4) traverses the control flow
graph GP of P starting from the first statement of P . Whenever a conditional
statement if(e) is met, then the “then” branch is taken if C,K |=T e. If instead
C,K |=T ¬e, then the “else” branch is taken. The control flow graph GP of P
is a directed graph GP = (NP , SuccP ), where NP = {1, . . . , n} is the set of
vertices and SuccP : NP → 2NP maps each vertex in the set of its successors.
For every vertex i such that 1 ≤ i ≤ n, si denotes the program statement
corresponding to i. By convention, node 1 of GP denotes the first statement of
P to be executed. If si is a conditional statement (i.e. it is of the form if(e)),

1: procedure ErrorTrace(i, K)
2: if si is an assignment then
3: Print(“Assignment:”, si)
4: ErrorTrace(sSuccP (i), K)
5: else if si is if(e) then
6: if C, K |=T e then
7: ErrorTrace(TSuccP (i), K ∪ {e})
8: else if C, K |=T ¬e then
9: ErrorTrace(FSuccP (i), K ∪ {¬e})

10: else
11: Let 〈j, c〉 ∈ {〈T succP (i), e〉, 〈F succP (i), ¬e〉}
12: be non-deterministically chosen.
13: ErrorTrace(j, K ∪ {c})
14: end if
15: else if si is assert(e) then
16: if C, K |=T e then
17: ErrorTrace(sSuccP (i), K)
18: else
19: Print(“Assertion violated:”, assert(e))
20: Halt
21: end if
22: end if
23: end procedure

Fig. 4. Building the program trace
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then SuccP (i) = {TsuccP (i), F succP (i)}, where TsuccP (i) (FsuccP (i)) denotes
the successor of i when e evaluates to true (false, resp.). If si is an assignment
or an assertion statement, SuccP (i) = {j}, with j ∈ NP , and we DEFINE
sSuccP (i) = j.

Notice that lines 11–13 of the algorithm allow for the non deterministic selec-
tion of a branch of a conditional statement if neither C,K |=T e nor C,K |=T ¬e
hold. This is necessary because the counterexample K might not be sufficient to
determine the branch to choose. In this event, the branch can be chosen non de-
terministically, and any counterexample output by the algorithm is a valid one.
Notice that this is a form of “don’t care” non-determinism and therefore no back-
tracking is necessary. As an example of this, it can be noted that in the program
of Figure 2 the assertion is violated independently from the value of variables x
and i, and therefore also independently from the choice of the branches of the
if statements. In fact, CVC Lite outputs a counterexample K = {y0 ≥ 5} for
which neither C,K |=T (x0 > 0 ∧ x0 < 10) nor C,K |=T (x0 > 0 ∧ ¬(x0 < 10))
hold.

4 Experimental Results

In order to assess the effectiveness of our approach we have developed a proto-
type implementation called smt-cbmc. smt-cbmc consists of four main mod-
ules, implemented in about 5,000 lines of Prolog code. The first module parses
the input program, the second carries out the preprocessing, the third builds
the quantifier-free formula, and the fourth module solves the formula accord-
ing to the user options by invoking CVC Lite.3 The latter module also builds
and prints the error trace whenever a counterexample is returned by CVC
Lite.

We have run smt-cbmc against a number of families of C programs. Each
family of programs is parametric in a positive integer N and such that both the
size of the arrays occurring in the programs and the number of iterations done
by the programs depend on N . Therefore the instances become harder as the
value of N increases. The benchmark problems considered are:

– BubbleSort.c(N), an implementation of the Bubble Sort algorithm [19],
– SelectSort.c(N), an implementation of the Selection Sort algorithm [19],
– BellmanFord.c(N), an implementation of the Bellman Ford algorithm

[20, 21] for computing single-source shortest paths in a weighted graph, and
– Prim.c(N) an implementation of Prim’s algorithm [22] for finding a mini-

mum spanning tree for a connected weighted graph.

Notice that these programs are well-known and therefore the result of the analy-
sis is not interesting in itself. However they allow us to carry out a systematic
and quantitative assessment of the tools as the size of the arrays involved in

3 Currently smt-cbmc can represent numeric data types with corresponding numeric
domains as well as with fixed-size bit-vectors.
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the programs increases. It is also worth pointing out that all the benchmark
problems considered involve a tight interplay between arithmetics and array
manipulation.

We have run both smt-cbmc and CBMC on our benchmark programs. We
report the total time spent by the tools to tackle each individual instance con-
sidered. Times are in seconds. All experiments have been obtained on a Pentium
IV 2.4 GHz machine running Linux with the memory limit set to 800MB and the
time limit set to 30 minutes. CBMC has been invoked by manually setting the
unwinding bound (CBMC --unwind n option) and by disabling simplification
(CBMC --no-simplify option).4

All the experiments presented in the rest of this section have been obtained
by modelling the basic data types using bit-vectors thereby enabling the deci-
sion procedure for the theory of bit-vectors available in CVC Lite during the
solving phase. Experimental results indicate that similar performances are ob-
tained by modelling the numerical variables with the integers thereby enabling
the decision procedure for linear arithmetics available in CVC Lite during the
solving phase. In this section we report about testing the tools on safe in-
stances of the benchmarks. Similar results are obtained if unsafe instances are
considered.

More information about the experiments is available at URL http://www.
ai.dist.unige.it/eureka.

4.1 Sorting Algorithms

The Bubble Sort algorithm (see Figure 5) sorts the array a by using two nested
loops that repeatedly swap adjacent elements. The assertion statements at the
end of the program check that the array has been sorted. The parameter N here
determines the size of the array, as well as the number of unwindings for each
loop. Notice that in this case the number of unwindings grows quadratically with
N as there are two nested loops.

The experimental results obtained for this family of programs are given in
Figure 6. Plot (a) shows the time spent by the tools in analysing the program
while plot (b) shows the size (in bytes) of the encodings. In both cases the value
of N is on the the x-axis. CBMC runs out of memory for N = 17, while smt-
cbmc can still analyse programs for N = 35. A comparison between the formulae
sizes of smt-cbmc and CBMC substantiates our remarks about the size of the
encodings: the formula built by smt-cbmc for N = 16 is roughly two orders of
magnitude smaller than the one built by CBMC.

Similarly to Bubble Sort, Selection Sort (see Figure 7) counts two nested
loops and a swap operation, and the assertions at the end of the program check

4 It is worth pointing out that CBMC features also an (undocumented) option --cvc
whose effect is to output the bit-vector equations of the formula in the CVC format
[23]. In this way it is possible to reason at the word-level, but still not using the theory
of arrays. However this option is still experimental and not yet fully operational and
therefore we have been unable to carry out experiments with it.
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int a[N];
void main(){
int i;
a={N-1,. . .,0};
BubbleSort();
for(i=0;i<N;i++)
assert(a[i]==i);

}

void BubbleSort(){
int i,j,t;
for (j=0;j<N-1;j++){
for (i = 0; i< N-j-1; i++){
if (a[i]>a[i+1]){
t = a[i];
a[i] = a[i+1];
a[i+1] = t;

}
}

}

Fig. 5. Source code of BubbleSort.c(N)
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Fig. 6. Results on BubbleSort.c(N)

that the given array has been sorted. Unlike Bubble Sort, where the swap is
guarded by an if within the nested loop, the swap operation is done N times,
where N is the size of the array, without any guard. Therefore, the encoding
grows as O(N · dim(a)), where dim(a) is the size of the array. As shown in
plot (b) of Figure 8, CBMC runs out of memory already for N = 21, whereas
smt-cbmc analyses instances till N = 35.

4.2 The Bellman-Ford Algorithm

The problems of the BellmanFord(N) family model are implementations of the
Bellman Ford algorithm with a graph comprising 5 nodes and N (randomly
generated) edges. Each edge is associated with a (randomly generated) positive
weight. The instance for N = 5 is given in Fig. 9. The edges are represented
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int a[N];
void main(){
int i;
a={N-1,. . .,0};
SelectSort();
for(i=0;i<N;i++)
assert(a[i]==i);

}

void SelectSort(){
int i,j,t,min;
for (j=0;j<N-1;j++){
min=j;
for (i=j+1; i<N; i++)
if (a[i]>a[min])
min = i;
t = a[j];
a[j] = a[min];
a[min] = t;

}
}

Fig. 7. Source code of SelectSort.c(N)
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Fig. 8. Results on SelectSort.c(N)

by the arrays Source and Dest, the weights by the array Weight. The assert
statements at the end on the program check that all the paths originating from
the source node (represented by 0) have positive weight.

The results of the experiments are given in the plots of Fig. 10, where the
x axis represents the number of edges. Notice that the maximum value for N is
20 in this case as the maximum number of edges in a fully connected directed
graph is k(k − 1) where k is the number of nodes. Plot (a) displays the time
spent by the tools in analysing the problems while plot (b) shows the size of the
formulae. Notice that the formula generated by CBMC is already one order of
magnitude bigger than the one of smt-cbmc, for N = 12.
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int INFINITY = 899;
void main(){
int nodecount = 5;
int edgecount = 10;
int source = 0;
int Source[10] = {0,0,1,0,3,3,0,1,1,3};
int Dest[10] = {1,1,1,1,2,4,4,2,3,3};
int Weight[10] = {0,1,2,3,4,5,6,7,8,9};
int distance[5];
int x,y,i,j;

for(i = 0; i < nodecount; i++){
if(i == source) distance[i] = 0;
else distance[i] = INFINITY;

for(i = 0; i < nodecount; i++){
for(j = 0; j < edgecount; j++){
x = Dest[j];
y = Source[j];
if(distance[x] > distance[y] + Weight[j])

distance[x] = distance[y] + Weight[j];
}

}

for(i = 0; i < edgecount; i++){
x = Dest[i];
y = Source[i];
if(distance[x] > distance[y] + Weight[i]) return;

}

for(i = 0; i < nodecount; i++) assert(distance[i]>=0);
}

Fig. 9. Source code of the instance of BellmanFord(N) for N = 10

4.3 Prim’s Algorithm

Prim’s algorithm [22] finds a minimum spanning tree for a connected weighted
graph. As in the Bellman-Ford implementation (Fig. 9), three arrays are used to
model the attributes of the edges that connect the nodes of the graph. We used
instances where the number of nodes of the graph is set to 4 and the number of
edges increases according to the parameter N , starting from N = 4. As shown in
Table 1, already for N = 4 the size of the formula output by smt-cbmc is roughly
37 times smaller than the one of CBMC. For N = 7 the difference becomes
greater: the formula generated by smt-cbmc becomes roughly 60 times smaller
than the one of CBMC. The generation of compact formulae has an impact on
the time spent by smt-cbmc in resolving them: the formula generated for N = 7
is resolved in less than 20 seconds while CBMC takes roughly two minutes, with
a difference of one order of magnitude.
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Fig. 10. Results on BellmanFord.c(N)

Table 1. Performance of smt-cbmc and CBMC against Prim(N)

Size (Bytes) Time (s)
N

4
5
6
7

smt-cbmc CBMC
381,233 14,269,837
702,954 31,453,119

1,170,649 59,675,705
1,810,798 108,045,992

smt-cbmc CBMC
2.99 9.27
5.31 28.08
10.81 43.66
17.78 151.08

5 Related Work

In the recent years a number of verification procedures and tools have been
developed for the analysis of software.

ESC/Java [24] is an effective error-detection tool for Java. User-annotated
Java programs are analysed by generating formulae (called verification con-
ditions) that represent those initial states from which no execution can
violate the given properties. Such formulae are generated according to the
semantics of weakest preconditions [25] and checked for validity with the Sim-
plify theorem prover [26]. The use of weakest preconditions to build the
verification condition imposes the computation of loop invariants. In order to
ensure termination (finding loop invariants is an undecidable problem) several
heuristics are employed, but this may lead to possible unsound outcomes of the
analysis.

In order to extract error traces from counterexamples, in [27] the authors
use labelling functions to build particular predicate symbols (labels) that are
then added to the verification condition. The labels contain information that
can be syntactically and automatically extracted from counterexamples in or-
der to detect the exact position of an error in the source code. Our approach,
by directly extracting error traces from counterexamples, does not clutter the
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formula fed to the SMT solver with extra-logical information. On the other hand
it requires the invocation of the SMT solver whenever a condition of a conditional
expression is met during the transversal of the control flow graph. However in
our experiments the time spent by our tool to carry out this activity is always
negligible.

SLAM [28], BLAST [29], and MAGIC [30] extend a symbolic model checking
procedure for boolean programs with abstraction and refinement. Their approach
has been shown to be very effective on specific application domains such as de-
vice drivers programming. However, when they come to reason about arrays
they trade precision for efficiency. For instance SLAM and BLAST do not dis-
tinguish different elements of an array and this may lead them to report unsound
results.

Saturn [31] is an efficient software error-detection tool that, like CBMC,
translates C programs into boolean formulae that are then fed to a SAT solver.
One of the distinguishing features of Saturn w.r.t. CBMC is the computation of
summaries for each analysed function in order to speed up the (interprocedural)
analysis. But again efficiency is obtained at the cost of losing soundness: similarly
to SLAM and BLAST, Saturn does not distinguish different elements of an
array.

Both CBMC and smt-cbmc treat arrays in a precise way, but they only
consider execution traces of bounded length, limitation that can be mitigated
by iterating the technique for increasing values of the unwinding bound. As
shown in Section 4 smt-cbmc can be considerably more effective than CBMC
when applied to programs involving arrays of non-negligible size. However when
no arrays occur in the program or when the arrays have small size CBMC can
be more effective than smt-cbmc. This suggests that the compilation to SMT
should be seen as a complement and not as an alternative to the compilation
to SAT. An interesting point is to determine syntactic criteria that allow us to
determine for any given program which of the two encoding techniques is likely
to perform best.

6 Conclusion

We have presented a Bounded Model Checking technique for sequential pro-
grams which uses SMT solvers instead of SAT solvers. Our work generalises
the one presented in [2] and we have shown that our encoding technique gen-
erates considerably more compact formulae than CBMC when arrays are in-
volved in the input program. In particular the size of the formulae generated
by our approach does not depend on the size of the bit-vector representa-
tion of the basic data types nor on the size of the arrays occurring in the
program.

Experimental results confirm the effectiveness of our approach: on problems
involving complex interactions of arithmetics and arrays manipulation smt-
cbmc scales significantly better than CBMC as the size of the arrays occurring
in the input program increases.
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Abstract. We address the problem of error detection for programs that
take recursive data structures and arrays as input. Previously we pro-
posed a combination of symbolic execution and model checking for the
analysis of such programs: we put a bound on the size of the program
inputs and/or the search depth of the model checker to limit the search
state space. Here we look beyond bounded model checking and consider
state matching techniques to limit the state space. We describe a method
for examining whether a symbolic state that arises during symbolic ex-
ecution is subsumed by another symbolic state. Since subsumption is in
general not enough to ensure termination, as the number of symbolic
states may be infinite, we also consider abstraction techniques for com-
puting and storing abstract states during symbolic execution. Subsump-
tion checking determines whether an abstract state is being revisited, in
which case the model checker backtracks - this enables analysis of an
under-approximation of the program behaviors. We illustrate the tech-
nique with abstractions for lists and arrays. The abstractions encode both
the shape of the program heap and the constraints on numeric data. We
have implemented the techniques in the Java PathFinder tool and we
show their effectiveness on Java programs.

1 Introduction

The problem of finding errors for programs that have heap structures and ar-
rays as inputs is difficult since these programs typically have unbounded state
spaces. Among the program analysis techniques that have gained prominence
in the past few years are model checking with abstraction, most notably pred-
icate abstraction [3, 11, 4], and static analysis [23, 7]. Both these techniques in-
volve computing a property preserving abstraction that over-approximates all
feasible program behaviors. While the techniques are usually used for proving
properties of software, they are not particularly well suited for error detection
– the reported errors may be spurious due to over-approximation, in which case
the abstraction needs to be refined. Furthermore, predicate abstraction handles
control-dependent properties of a program well, but it is less effective in han-
dling dynamically allocated data structures and arrays [18]. On the other hand,
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static program analyses, and in particular shape analysis, use powerful shape
abstractions that are especially designed to model properties of unbounded re-
cursive heap structures and arrays, often ignoring the numeric program data. A
drawback is that, unlike model checking, static analyses typically don’t report
counter-examples exhibiting errors.

We propose an alternative approach that enables discovery of errors in
programs that manipulate recursive data structures and arrays, as well as
numeric data. The approach uses symbolic execution to execute programs on
un-initialized inputs and it uses model checking to systematically explore the
program paths and to report counter-examples that are guaranteed to be feasi-
ble. We use abstractions to compute under-approximations of the feasible pro-
gram behaviors, hence counter-examples to safety properties are preserved. Our
abstractions encode information about the shape of the program heap (as in
shape analysis) and the constraints on the numeric data.

We build upon our previous work where we proposed a combination of sym-
bolic execution and model checking for analyzing programs with complex in-
puts [14,19]. In that work we put a bound on the input size and (or) the search
depth of the model checker. Here we look beyond bounded model checking and
we study state matching techniques to limit the state space search. We propose
a technique for checking when a symbolic state is subsumed by another sym-
bolic state. The technique handles un-initialized, or partially initialized, data
structures (e.g. linked lists or trees) as well as arrays. Constraints on numeric
program data are handled with the help of an off-the-shelf decision procedure.
Subsumption is used to determine when a symbolic state is revisited, in which
case the model checker backtracks, thus pruning the state space search.

Even with subsumption, the number of symbolic states may still be un-
bounded. We therefore define abstraction mappings to be used during state
matching. More precisely, for each explored state, the model checker computes
and stores an abstract version of the state, as specified by the abstraction map-
pings. Subsumption checking then determines if an abstract state is being re-
visited. This effectively explores an under-approximation of the (feasible) paths
through the program. We illustrate symbolic execution with abstract subsump-
tion checking for singly linked lists and arrays. Our abstractions are similar to
the ones used in shape analysis: they are based on the idea of summarizing heap
objects that have common properties, for example, summarizing list elements
on unshared list segments not pointed to by local variables [18].

To the best of our knowledge, this is the first time shape abstractions are used
in software model checking, with the goal of error detection. We summarize our
contributions as follows: (i) Method for comparing symbolic states, which takes
into account uninitialized data. The method handles recursive structures, arrays
and constraints on numeric data. The method is incorporated in our framework
that performs symbolic execution during model checking. (ii) Abstractions for
lists and arrays that encode the shape of the heap and the numeric constraints
for the data stored in the summarized objects. (iii) Implementation in the Java
PathFinder tool and examples illustrating the application of the framework on
Java programs.
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Related Work. Our work follows a recent trend in software model check-
ing, which proposes under-approximation based abstractions for the purpose of
falsification [1, 2, 12, 21]. These methods are complementary to the usual over-
approximation based abstraction techniques, which are geared towards prov-
ing properties. There are some important differences between our work and
[1,2,12,21]. The works presented in [12,21] address analysis of closed programs,
not programs with inputs as we do here, and use abstraction mappings for state
matching during concrete execution, not symbolic execution. Moreover, the ap-
proaches presented in [12,21] do not address abstractions for recursive data struc-
tures and arrays. The approach presented in [1, 2] uses predicate abstraction to
compute under-approximations of programs. In contrast, we use symbolic exe-
cution and shape abstractions with the goal of error detection. And unlike [1,2]
and also over-approximation based predicate abstraction techniques, which re-
quire the a priori computation of the abstract program transitions, regardless of
the size of the reachable state space, our approach uses abstraction only during
state matching and it involves only the reachable states under analysis.

In previous work [20] we developed a technique for finding guaranteed feasi-
ble counter-examples in abstracted Java programs. That work addresses simple
numeric abstractions (not shape abstractions as we do here) and it did not use
symbolic execution for program analysis.

Program analysis based on symbolic execution has received a lot of attention
recently, e.g. [8,15,24] - however all these approaches don’t address state match-
ing. Symstra [26] uses symbolic execution over numeric data and subsumption
checking for test generation; we generalize that work with subsumption for un-
initialized complex data; in addition, we use abstraction to further reduce the
explored symbolic state space.

The works in [18,27] propose abstractions for singly linked lists that are sim-
ilar to the one described in this paper; however, unlike ours, these abstractions
don’t account for the numeric data stored in the summarized list elements. Re-
cent work for summarizing numeric domains [9,10] addresses that in the context
of arrays and recursive data structures. The work presented in [5] proposes
to use predicate abstraction based model checking to programs that manipu-
late heap structures. However, these approaches use over-approximation based
abstractions and it is not clear how to generate feasible counter-examples that
expose errors.

2 Background

Java PathFinder. JPF [13,25] is an explicit-state model checker for Java pro-
grams that is built on top of a custom-made Java Virtual Machine (JVM). By
default, JPF stores all the explored states, and it backtracks when it visits a
previously explored state. Alternatively, the user can customize the search (by
forcing the search to backtrack on user-specified conditions) and it can specify
what part of the state (if any) to be stored and used for matching. We used
these features to implement (abstract) subsumption checking.



166 S. Anand, C.S. Păsăreanu, and W. Visser

Symbolic Execution in Java PathFinder. Symbolic execution [16] allows
one to analyze programs with un-initialized inputs. The main idea is to use sym-
bolic values, instead of actual (concrete) data, as input values and to represent
the values of program variables as symbolic expressions. As a result, the outputs
computed by a program are expressed as a function of the symbolic inputs.

The state of a symbolically executed program includes the (symbolic) values
of program variables, a path condition (PC) and a program counter. The path
condition accumulates constraints which the inputs must satisfy in order for an
execution to follow the corresponding path.

In previous work [14,19], we extended JPF to perform symbolic execution for
Java programs. The approach handles recursive data structures, arrays, numeric
data and concurrency. Programs are instrumented to enable JPF to perform sym-
bolic execution; concrete types are replaced with corresponding symbolic types
and concrete operations are replaced with calls to methods that implement cor-
responding operations on symbolic expressions1. Whenever a path condition is
updated, it is checked for satisfiability using an appropriate decision procedure.
We use the Omega library [22] for linear integer constraints, but other decision
procedures can be used. If the path condition is unsatisfiable, the model checker
backtracks. Note that if the satisfiability of the path condition cannot be de-
termined (i.e., as it may be undecidable), the model checker still backtracks.
Therefore, the model checker explores only feasible program behaviors, and all
counterexamples to safety properties are preserved.

As described in [14], the approach is used for finding counterexamples to
safety properties and for test input generation. For every counterexample, the
model checker reports the input heap configuration (encoding constraints on
reference fields and array indices), the numeric path condition (and a satisfying
solution), and thread scheduling, which can be used to reproduce the error.

Lazy Initialization. Symbolic execution of a method is started with inputs
that have un-initialized fields; lazy initialization is used to assign values to these
fields, i.e., fields are initialized when they are first accessed during the method’s
symbolic execution. This allows symbolic execution of methods without requiring
an a priori bound on the number of input objects.

When the execution accesses an un-initialized reference field, the algorithm
nondeterministically initializes the field to null, to a reference to a new object
with uninitialized fields, or to a reference of an object created during a prior
field initialization; this systematically treats aliasing.

Lazy initialization for arrays proceeds in a similar way. Input arrays are
represented by a collection of initialized array cells and a symbolic value repre-
senting the array’s length. Each cell has a symbolic index and a symbolic elem
value. When symbolic execution accesses an un-initialized cell, it initializes it
nondeterministically to a new cell or to a cell that was created during a prior
initialization; the path condition is updated with constraints that ensure that

1 The interested reader is referred to [14] for a detailed description of the code instru-
mentation.
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the index is within the array bounds and index of the the cell equals to the index
that was accessed.

Method preconditions are used during lazy initialization to ensure that the
method is executed only on valid inputs.

3 Example

We illustrate symbolic execution with abstract subsumption checking on the
example from Figure 1. Class Node implements singly-linked lists of integers;
fields elem and next represent, respectively, the node’s value and a reference to
the next node in the list. Method find returns the first node in the list whose
elem field is greater than v. Let us assume for simplicity that the method has as
precondition that the input list (pointed to by this) is non-empty and acyclic.
We check if null pointer exceptions can be thrown in this program.

Figure 2 illustrates the paths that are generated during the symbolic execu-
tion of method find (we have omitted some intermediate states). Each symbolic
state consists of a heap structure and the path condition (PC) accumulated along
the execution path. A “cloud” in the figure indicates that the segment of the
list pointed to by the next field is not yet initialized. The heap structures repre-
sent constraints on program variables and reference fields, e.g. the structure in
s1 represents all the lists that have at least one (non-null) element such that n
points to the head of the list.

Branching corresponds to a nondeterministic choice that is introduced to
build a path condition or to handle aliasing, during lazy initialization. For ex-
ample, when the numeric condition at line 3 is executed symbolically there is a
branch in execution for each possible outcome of the condition’s evaluation (e.g.
states s2 and s3). As mentioned, branching is also introduced by lazy initializa-
tion: for example, at line 4 the next field is accessed for the first time so it is
initialized according to all the possible aliasing relationships in the inputs: on
one branch, the “cloud” is replaced with a new node, whose next field points

class Node {
int elem;
Node next; ...

Node find( int v ){
1: Node n = this;
2: while( n != null ){
3: if(n.elem > v) return n;
4: n = n.next;

}
5: return null;

}}

Fig. 1. Example illustrating symbolic execution with abstract subsumption checking
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Fig. 2. State space generated during symbolic execution of find (excerpts)

to a “cloud”, while on the other branch, the cloud is replaced with null (e.g.
states s4 and s5). Note that if we wouldn’t have imposed the precondition that
the input list is acyclic, there had been a third branch corresponding to next
pointing to itself.

The (symbolic) state space for this example is infinite and there is no sub-
sumption between the generated symbolic states. However, if we use abstraction,
the symbolic state space becomes finite. The list abstraction summarizes con-
tiguous node segments that are not pointed to by local variables into a summary
node. Since the number of local variables is finite, the number of abstract heap
configurations is also finite. For the example, two nodes in state s12 are mapped
to a summary node. As a result, the abstract state is subsumed by previously
stored state s8, at which point the model checker backtracks. The analysis ter-
minates reporting that there are no null pointer exceptions. Note that due to
abstract matching, the model checker might miss feasible behaviors. However,
for this example, the abstraction is in fact exact – there is no loss of precision
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due to abstraction (all the successors of s12 are abstracted to states that are
subsumed by the states depicted in Figure 2).

4 Subsumption for Symbolic States

In this section we describe a method for comparing symbolic states. This method
is used in our framework for state matching, during symbolic execution. The
method is also used for comparing abstracted symbolic states (as described in
the next section).

Symbolic states represent multiple concrete states, therefore state matching
involves checking subsumption between states. A symbolic state s1 subsumes
another symbolic state s2, if the set of concrete states represented by s1 contains
the set of concrete states represented by s2.

Symbolic State Representation. A symbolic state s consists of a symbolic
heap configuration H and a path condition PC. The symbolic state also contains
the program counter and thread scheduling information, which we ignore here for
simplicity. Heap configurations may be partially initialized. Let R and F denote
the set of all reference variables and object fields in the program respectively.
We also assume that heap configurations are garbage free.

Definition 1. A symbolic heap configuration H is a graph represented by a tuple
(N, E). N is the set of nodes in the graph, where each node corresponds to a heap
cell or to a reference program variable. N = NO ∪ R ∪ {null, uninit} where:

– null and uninit are distinguished nodes that represent respectively, null and
objects not yet initialized.

– NO is the set of nodes representing dynamically allocated objects.

E is the set of edges in H such that E = EF ∪ ER where:

– EF ⊆ (NO×F ×(N \R)) represent selector field edges. An edge (n1, f, n2) ∈
EF denotes that field f of the object represented by n1 points to the object
represented by n2.

– ER ⊆ (R × (NO ∪ {null})) represent points-to edges. An edge (r, n1) ∈ ER

represents the fact that reference variable r points to the object represented
by n1.

A symbolic heap configuration represents a potentially infinite number of con-
crete heaps through the uninit node. Let γ(HS) denote all the concrete heaps H
represented by HS . For symbolic heaps H2, H1: H2 subsumes H1 iff
γ(H1) ⊆ γ(H2).

A symbolic state also includes the valuation for the primitive typed fields
(described later in this section) and the program counter. We check subsump-
tion only for states that have the same program counter; checking subsumption
involves checking (1) subsumption for heap configurations (where we ignore the
valuation of the primitive typed fields) and (2) valid implication between the
numeric constraints encoded in the symbolic states.
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Data: Heap Configurations H1 = (NH1 , EH1),H2 = (NH2 , EH2)
Result: true if H2 subsumes H1, false otherwise; also builds labeling l for

matched nodes
wl1 := {n such that (r, n) ∈ EH1

R }, wl2 := {n such that (r, n) ∈ EH2

R };
while wl2 is not empty do

if wl1 is empty then return false;
n1 := get(wl1), n2 := get(wl2);
if n2 = uninit then continue;
if n1 = uninit then return false;
if (l(n2) �= null ∨ l(n1) �= null) ∧ l(n2) �= l(n1) then return false;
/* n1, n2 matched before: */
if (l(n2) �= null ∧ l(n1) = l(n2)) then continue;
if n1 = null ∧ n2 = null then continue;
if n1 �= null ∧ n2 �= null then

l(n2) := l(n1) := new label();
add successors of n1, n2 to wl1, wl2 respectively in the same order;

end
else return false;

end
if wl1 is not empty then return false;
return true;

Algorithm 1. Subsumption for Heap Configurations

Subsumption for Heap Configurations. In order to check if a program
state s2 = (H2, PC2) subsumes another program state s1 = (H1, PC1), we
first check if heap configuration H2 subsumes heap configuration H1. Intuitively,
H2 subsumes H1 if H2 is “more general” (i.e., represents more concrete heap
configurations) than H1. Subsumption for heap configurations is described in
Algorithm 1. The algorithm traverses the two heap graphs at the same time, in
the same order, starting from the roots and trying to match the nodes in the two
structures. Each of the reference variables from R represents a root of the heap.
We impose an order on the reference variables and the heap graph is traversed
from each of the roots in that order. The algorithm maintains two work lists
wl1 and wl2 to record the visited nodes; the lists are initialized with the heap
objects pointed to by the variables in R; get and add are list operations that
remove the first element and add an element to the end of the list, respectively.

The algorithm also labels the heap nodes during traversal, such that two
matched nodes have the same unique label. These labels are used for checking
state subsumption (as discussed below). Let l : (NH1

O ∪ NH2

O ) → ∪ {null},
where is a set of labels {l1, l2, l3...}. If H2 subsumes H1 with a labelling l, we
write H2 %l H1. If the algorithm finds two nodes that cannot be matched, it
returns false. Moreover, whenever an uninitialized H2 node is visited during tra-
versal, the algorithm backtracks, i.e., successors of the node in H1 that matches
this uninitialized node are not added to the worklist; the intuition is that an
uninitialized node uninit in H2 can be matched with an arbitrary subgraph in
H1. However, an uninitialized node in H1 can only match an uninitialized node
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Fig. 3. Matched and unmatched heap configurations; l1 and l2 label matched nodes

in H2. Note that nodes in H1 which were not visited due to matching with
uninitialized nodes are not labeled (i.e. they have null labels). As an example,
Figure 3 shows the heap configurations for two matched lists and two unmatched
binary trees. Figure 3 (left) illustrates the labeling for the two matched lists.

Theorem 1. If Algorithm 1 returns true and labeling l for inputs H1 and H2
then H2 %l H1.

Note that Algorithm 1 works on shapes represented as graphs that are determin-
istic, i.e. for each node, there is at most one outgoing edge for each selector field.
Therefore, the algorithm applies to concrete heap shapes as well as partially ini-
tialized symbolic heap shapes (representing, linked lists, trees, etc.). The same
algorithm also works on the abstractions for singly linked lists and arrays that
we present in the next section (since our abstractions preserve the deterministic
nature of the heap).

Checking Validity of Numeric Constraints. Shape subsumption is only a
pre-requisite of state subsumption: we also need to compare the numeric data
stored in the symbolic states. Let primfld(n) denote all the fields of node n that
have primitive types. For the purpose of this paper, we consider only integer
types, but other primitive types can be handled similarly, provided that we have
appropriate decision procedures; valS(n, f) denotes the (symbolic) value stored
in the integer field f of node n in state S.

Definition 2. The “valuation” of a symbolic state s parameterized by labeling
l : NO → is defined as:

val(s, l) =
∧

n∈NOs.t.l(n) �=null
f∈primfld(n)

fn(l(n), f) = vals(n, f).

Where fn(label, f ield) returns a fresh name that is unique to (label, f ield) pair.

Let vs denote all the symbolic names that are used in symbolic state s; this in-
cludes both the values stored in the heap and the values that appear in the path
condition. In order to check validity for the numeric constraints, we use exis-
tential quantifier elimination for these symbolic variables to obtain the numeric
constraints for a symbolic state.
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thisthis
next next next next nextv1 v3 v2

valuation : e1 = v1 ∧ e2 = v3

PC : v1 < v3 ∧ v3 < v2

s1 :

v1 v2

valuation : e1 = v1 ∧ e2 = v2

PC : v1 ≤ v5 ∧ v5 ≤ v2

s2 :

l2 :l1 : l1 : l2 :

Fig. 4. State Subsumption

We are now ready to describe subsumption checking for symbolic states.
A state s1 = (H1, PC1) is subsumed by another state s2 = (H2, PC2) (or s2
subsumes s1) if

1. H2 %l H1 and
2. ∃vs1

.val(s1, l) ∧ PC1 ⇒ ∃vs2
.val(s2, l) ∧ PC2.

The complexity for one subsumption step includes the complexity of heap
traversal (O(n) where n is the size of the heap) and the complexity for checking
numeric constraints. While the cost of checking numerical constraints cannot be
avoided, we believe that the cost of heap traversal can be somewhat alleviated
if it is performed during garbage collection. However we need to experiment
further with this idea.

As an example, consider two symbolic states in Figure 4, where s1 is sub-
sumed by s2. The corresponding heap configurations were matched and labeled
as described before (H2 subsumes H1). The valuation encodes the constraints
for the numeric fields, e.g. for the first list e1 = v1 ∧ e2 = v3 encodes that the
elem field of the node labeled by l1 (denoted by e1) has symbolic value v1 while
the elem field of the node labeled by l2 (denoted by e2) has symbolic value v3.
The path condition puts further constraints on the symbolic values v1 and v3.
The path conditions may contain symbolic values that are not stored in the heap
(e.g. v5 in s2) according to the program path that led to the symbolic state.

For state comparison, we “normalize” the numeric constraints, i.e., we use
the Omega library for existential quantifier elimination – intuitively, for this
example, we are only interested in the relative order of the data stored in the
matched heap nodes. For s1 we compute ∃v1, v3, v2 : e1 = v1 ∧ e2 = v3 ∧ v1 <
v3 ∧ v3 < v2 which simplifies to e1 < e2. Note that since the third node in the
list in s1 was not matched it is not represented in the constraint. Similarly, for
s2, ∃v1, v2, v5 : e1 = v1 ∧ e2 = v2 ∧ v1 ≤ v5 ∧ v5 ≤ v2 simplifies to e1 ≤ e2. And
as e1 < e2 ⇒ e1 ≤ e2 is valid and H2 subsumes H1, s2 subsumes s1.

5 Abstractions

5.1 Abstraction for Singly Linked Lists

The abstraction that we have implemented is inspired by [18,27] and it is based
on the idea of summarizing all the nodes in a maximally uninterrupted list seg-
ment with a summary node. The main difference between [18, 27] and the ab-
straction presented here is that we also keep track of the numeric data stored in
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the summary nodes and we give special treatment to un-initialized nodes. The
numeric data stored in the abstracted list is summarized by setting the valuation
for the summary node to be a disjunction of the valuations of the summarized
symbolic nodes. Intuitively, a summary node stores the union of the values stored
in the summarized nodes. Subsumption can then be used as before to perform
state matching for abstract states (see Algorithm 1 where summary nodes are
treated in the same way as the heap object nodes).

Definition 3. A node n is defined as an interrupting node, or simply an inter-
ruption if n satisfies at least one of following conditions:

1. n = null
2. n = uninit
3. n ∈ {m such that (r, m) ∈ ER}, ie. n is pointed to by at least one reference

variable.
4. ∃n1, n2 such that (n1, next, n), (n2, next, n) ∈ EF , ie. n must be pointed-to

by at least two nodes (cyclic list).

An uninterrupted list segment is a segment of the list that does not contain
an interruption. An uninterrupted list segment [u, v] is maximal if, (a, next, u) ∈
EF ⇒ a is an interruption and (v, next, b) ∈ EF ⇒ b is an interruption.

The abstraction mapping α between symbolic heap configurations replaces all
maximally uninterrupted list segments in heap H with a summary node in α(H).
If [u, v] is a maximally uninterrupted list segment in H , its abstraction α(H) is
computed from H as follows:

1. Add a new summary node nsum to the set of nodes NH
O .

2. If there is an edge (a, next, u) ∈ EH
F replace (a, next, u) by (a, next, nsum).

3. If there is an edge (v, next, b) ∈ EH
F replace (v, next, b) by (nsum, next, b).

4. Remove all nodes m in the list segment [u, v] from NH
O and all edges incident

on m or going out of m.

Note that the edges between the nodes in the list segment, which is replaced
by a summary node, are not represented in the abstraction α(H). With this
abstraction, Algorithm 1 is used to check subsumption for abstracted heaps.

In order to check validity of numeric constraints, the definition of valuation
is modified as follows:

Definition 4. Valuation for an abstract state s, parameterized by labeling l is
defined as,

valabs(s, l) =
∧

n∈(NO\NS)s.t.l(n) �=null
f∈primflds(n)

fn(l(n), f) = vals(n, f)

∧
nsum∈NSs.t.l(n) �=null

∨
t∈sumnodes(nsum)

f∈primflds(t)

fn(l(nsum), f) = vals(t, f)

where, NS ⊆ NO represents the set of summary nodes in NO, and sumnodes(nsum)
denotes the set of nodes that are summarized by nsum.
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Fig. 5. Abstract subsumption between s8 and s12

Example. To illustrate the approach, let us go back to the example presented
in Section 3. Figure 5 depicts the abstraction for state s12 and the valuation for
the abstracted heap configuration. The abstracted state is subsumed by state
s8. Note that we don’t explicitly summarize list segments of size one (e.g. the
second list element in s8) - in this case, the abstracted and the un-abstracted
versions of a symbolic state are in fact the same.

Discussion. Note that the list abstraction ensures that the number of possi-
ble abstract heap configurations is finite; however, it is still possible to have an
infinite number of different constraints over the numeric data. Also note that
the focus here is on abstracting heap structures, more specifically lists, and the
numeric data stored in these structures. Therefore we ignored here the numeric
values of local program variables, which may also be unbounded (they are cur-
rently discarded in the abstracted state). To address these issues, we plan to use
predicate abstraction in conjunction with the abstractions presented here. This
is the subject of future work.

As mentioned, the list abstraction that we use preserves the deterministic na-
ture of the heap; therefore we can use Algorithm 1 for checking subsumption for
abstract heap structures. However, this is not true in general for other abstrac-
tions (e.g. in a tree abstraction, a summary node may have multiple outgoing
edges for the same selector field). In the future we plan to study the decidabil-
ity of subsumption checking for more general heap abstractions – see e.g. [17] –
and we plan to extend our approach to these cases (e.g. through a conservative
approximation of the algorithm for subsumption checking).

5.2 Abstraction for Arrays

We extended our framework with subsumption checking and an abstraction for
arrays of integers. The basic idea is to represent symbolic arrays as singly linked
lists and to apply the (abstract) subsumption checking methods developed for
lists. Specifically, we maintain the arrays as singly linked lists, which are sorted
according to the relative order of the array indices. Consecutive (initialized) ar-
ray elements are represented as linked nodes. Summary nodes are introduced
between array elements that are not consecutive. These summary nodes model
zero or more un-initialized array elements that may possibly exist in the (con-
crete) array. We must note that this is only one particular abstraction, and there
may be others – we adopt this one because in this way we can leverage on our
abstraction techniques for lists.
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With this list representation we apply subsumption as before. However, the
“roots” are now integer program variables that are used to index the array and
the special summary nodes are treated as “normal” heap objects that contain
unconstrained values. Abstraction is applied in a way similar to abstraction
for linked lists. The interruptions are extended to contain the special summary
nodes that were introduced to model un-initialized array segments. Note that
subsumption becomes “approximate”, i.e., we might miss the fact that a state
subsumes another, but it is never the case that we say that a state subsumes
another state incorrectly.

Array Representation. A symbolic array A is represented by a a collection
of array cells and a symbolic value len representing the array length. Each array
cell c is a tuple (index, elem): index is a symbolic value representing the index
in the array and elem is a symbolic value representing the value stored in the
array at position index.

The array cells are stored in a singly linked list which is sorted according to
the relative order of the indices of the cells. Each list element corresponds to an
array cell in A. Given array cell c, let index(c) and elem(c) denote the index
and the value of c; also let next(c) denote the cell that is next to c in the list.

The following invariants hold for the list.

1. index of first node is greater than or equal to 0.
2. index of last node is less than len.
3. For each array cell c, other than the last cell, index(c) < index(next(c)).

Note that our implementation maintains these invariants during lazy initial-
ization, i.e., whenever symbolic execution accesses an un-initialized array cell, it
initializes it non-deterministically to a previously created cell or to a new cell to
be placed either between two existing cells that may not be consecutive, or at the
end or at the beginning of the list. The path condition is also updated to encode
this information. As discussed, in order to check subsumption, we further intro-
duce additional summary nodes between nodes that represent non-consecutive
array elements.

Algorithm 2 ensures that if two array cells c1 and c2 may represent non-
adjacent array elements, then they are represented as list nodes separated by
special summary nodes (n∗). On the other hand, if c1 and c2 represent two
consecutive elements, they are connected directly by a next link. Similarly, if
the first (last) cell of the array may not represent the first(last) element of the
array, a special summary node is added before (after) the node.

With this transformation, we can apply subsumption checking as before.
However, the “roots” of the heap representing the array now include a vari-
able pointing to the head of the list (that represents the array), and all integer
program variables that index array elements. These variables are the analog of
the reference variables r ∈ R, and are denoted by I. vals(i), i ∈ I denotes the
(symbolic) value of i.

Abstraction over arrays is very similar to the one used for lists. It summarizes
maximally uninterrupted segments corresponding to consecutive array elements.
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Data: Sorted linked list HA = (N, E) representing array A
Result: Sorted linked list H ′A = (N ′, E′) that contains additional summary

nodes representing uninitialized consecutive array elements
foreach c in NO do

add c to N ′
O ;

if c is the first element in HA ∧ PC ⇒ index(c) = 0 is invalid then
add a special summary node n∗ before c in H ′A;

end
if c is the last element in A ∧ PC ⇒ index(c) = len − 1 is invalid then

add a special summary node n∗ after c in H ′A;
else

next(c) := cell following c in A;
if PC ⇒ index(c) = index(next(c)) − 1 is invalid then

add a special summary node n∗ after c in A′;
end

end
end

Algorithm 2. Building sorted linked lists representing symbolic arrays

However, the definition for an interruption is slightly different, as it considers
the special summary nodes introduced by Algorithm 2 as interruptions.

Definition 5. A node c in is an interruption if c = n∗, orc=null, or c represents
an array cell such that ∃i ∈ I.vals(i) = index(c).

Abstraction involves replacing all uninterrupted segments with a summary node
(similar to list abstraction). Note that this abstraction can be improved further,
by mapping all contiguous segments of (summary and non-summary) nodes that
are not pointed to by local variables to a (new) summary node.

Example. Consider the symbolic array in Figure 6 (a): v0..v5 are symbolic
values stored in the initialized array elements. The concrete values 0..3 and the
symbolic values j and n are array indices. Note that j and n are constrained by
the path condition; len is a symbolic value representing the array length. Local
program variables lo and hi are used to index the array. Figure 6 (b) shows
the list representation for the symbolic array. The list is sorted according to the
relative order of indices.

In the example the first four array elements are represented by nodes that
are directly connected, as they have consecutive indices. However, the 5th array
element is separated from the other nodes by two summary nodes (marked with
a “*”). Note that unlike uninit nodes, these summary nodes are not completely
unconstrained (we know their relative order in the array). We use the Omega
library to decide if two elements have consecutive indices (in which case they are
directly connected in the list). Figure 6 (c) shows the abstracted list, obtained
with the method described before, where we consider the two variables lo and
hi as interruptions; the “*” nodes are also considered interruptions.



Symbolic Execution with Abstract Subsumption Checking 177

lo hi

hilo

a

a

3

a:

n0 1 2 j

(a) Symbolic array:

lo hi

(b) List representation:

(c) Abstraction:
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v0 v1 ∨ v2 v3 v4 v5

Fig. 6. A symbolic array (a), its list representation (b) and its further abstraction (c)

6 Experiments

We have implemented (abstract) subsumption checking on top of the symbolic
execution framework implemented in JPF; the implementation uses the Omega
library as a decision procedure. We applied our framework for error detection in
two Java programs, that manipulate lists and arrays respectively.

The first program, shown in Fig. 7(a), is a list partition taken from [6]. The
method takes as input an acyclic linked list l and an integer v and it removes all
the nodes whose elem fields are greater than v; the removed elements are stored
in a new list, which is pointed to by newl. A post-condition of the method is that
each element in the list pointed to by l after method’s execution must be less
than or equal to v. This post-condition is not satisfied for the buggy program.

In order to apply symbolic execution, we first instrumented the code, as
shown in Fig. 7(b). Concrete types are replaced with symbolic types (library
classes that we provide), and concrete operations are replaced with method calls
that implement equivalent symbolic operations. For example, classes SymList
and SymNode implement symbolic Lists and Nodes respectively, while class
Expression supports manipulation of symbolic integers.

Method ifSubsumed checks for state subsumption. It takes an integer argu-
ment that denotes the program counter, and it returns true only if the current
program state is subsumed by a state which was observed before at that pro-
gram point. If ifSubsumed returns true, then the model checker backtracks (as
instructed by the Verify.ignoreIf method); otherwise, the current state is
stored for further matching and the search continues. check() and its symbolic
version symCheck() checks if the method’s post-condition is satisfied.

Symbolic execution with abstract subsumption checking discovers the bug
and it reports a counterexample of 10 steps, for an input list that has two
elements, such that the first element is ≤ v, and the second element is > v.

The second program, shown in Fig. 8(a), is an array partition taken from [1].
It is a buggy version of the partition function used in the QuickSort algorithm,
a classic example used to study test generation. The function permutes the
elements of the input array so that the resulting array has two parts: the first
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class ListPartition{
List list = new List();
Node l = list.root;
Node curr, prev, newl, nextCurr;
int v;
public void partition(){
prev = newl = null;
curr = l;
while(curr != null){

nextCurr = curr.next;
if( curr.elem > v ){
//if(prev != null &&
// nextCurr != null) //bug
if(prev != null) //fix

prev.next = nextCurr;
if(curr == l) l = nextCurr;
curr.next = newl;
newl = curr;

}
else prev = curr;
curr = nextCurr;

} check();} }

(a) Original code

class ListPartition{
SymList list = new SymList();
SymNode l = list.root();
SymNode curr, prev, newl, nextCurr;
Expression v = new SymbolicInteger();
public void partition(){

prev = newl = null;
curr = l;
while(curr != null){
Verify.ignoreIf(ifSubsumed(1));
nextCurr = curr.get_next();
if(curr.elem()._GT(v)){
//if(prev != null &&
// nextCurr != null) //bug
if(prev != null) //fix

prev.set_next(nextCurr);
if(curr == l) l = nextCurr;
curr.set_next(newl);
newl = curr;

}
else prev = curr;
curr = nextCurr;

} symCheck(); } }

(b) Instrumented code

Fig. 7. List Partition Example

part contains values that are less than or equal to the chosen pivot value a[0];
while the second part has elements that are greater than the pivot value. There
is an array bound check missing in the code at line L2 that can lead to an array
bounds error. The corresponding instrumented code is shown in Fig. 8(b) – class
SymbolicIntArray implements symbolic arrays of integer, while ArrayIndex
implements symbolic integers that are array indexes.

Symbolic execution with abstract subsumption checking reports a counterex-
ample of 30 steps, for an input array that has four elements.

We also analyzed the corrected versions of the two partition programs to
see whether symbolic execution with abstract subsumption checking terminates
when the state-space is infinite, which is the case for the two programs. The
state-exploration indeed terminates without reporting any error. For the list par-
tition the analysis checked subsumption 23 times of which 11 states were found
to be subsumed (12 unique states were stored). For the array partition the re-
spective numbers were: 30 checks, with 17 subsumed and 13 states stored. This
demonstrates the effectiveness of the abstractions in limiting the state space.
We should note that subsumption checking without abstraction is not sufficient
to limit the state space. This is in general the case for looping programs. Al-
though in theory, we should check for subsumption at every program point to
get maximum savings, it may be very expensive. In all our experiments, we
checked for subsumption inside every loop only once, before the body of the
loop is executed.
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class ArrayPartition{
int[] a;
int n, tmp, pivot;
int lo;
int hi;
public void parition(){

//assume (n > 2);
pivot = a[0];
lo = 1;
hi = n-1;
while(lo <= hi){

L2: //while(a[lo] <= pivot) //bug
while(lo <= hi &&

a[lo] <= pivot) //fix
lo++;

while(a[hi] > pivot)
hi--;

if(lo < hi){
tmp = a[hi];
a[hi] = a[lo];
a[lo] = tmp;

} } } }

(a) Original code

class ArrayPartition{
SymbolicIntArray a;
Expression pivot, n, tmp;
ArrayIndex lo = new ArrayIndex("lo");
ArrayIndex hi = new ArrayIndex("hi");

public void partition(){
Verify.ignoreIf(n._LE(2));
pivot = a.get(0);
lo.assign(new IntegerConstant(1));
hi.assign(n._minus(1));
while(lo.index()._LE(hi.index())){

Verify.ignoreIf(ifSubsumed(1));
L2: //while(a.get(lo)._LE(pivot)){ //bug

while(lo.index()._LE(hi.index()) &&
a.get(lo)._LE(pivot)){ //fix

Verify.ignoreIf(ifSubsumed(2));
lo.assign(lo.index()._plus(1));

}
while(a.get(hi)._GT(pivot)){

Verify.ignoreIf(ifSubsumed(3));
hi.assign(hi.index()._minus(1));

}
if(lo.index()._LT(hi.index())){

Expression tmp = a.get(hi);
a.set(hi, a.get(lo));
a.set(lo, tmp);

} } } }

(b) Instrumented code

Fig. 8. Array Partition Example

We should note that these simple preliminary experiments show only the
feasibility of the approach. A lot more experimentation and engineering is needed
to be able to assess the merits of the approach on realistic programs. We should
note that even for such small examples, traditional testing methods would not
discover the errors easily (e.g. a test-suite which gives 100% statement, or branch
coverage might not be able to detect the errors).

7 Conclusion

We described a state space exploration approach that uses symbolic execution
and subsumption checking for the analysis of programs that manipulate heap
structures and arrays. The approach explores only feasible program behaviors.
We also defined abstractions for lists and arrays, to further reduce the explored
symbolic state space. We implemented the approach in the Java PathFinder tool
and we applied it for error detection in Java programs.

The approach presented here is complementary to over-approximation ab-
straction methods and it can be used in conjunction with such methods, as an
efficient way of discovering counter-examples that are guaranteed to be feasible.
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We view the integration of the two approaches as an interesting topic for future
research. For the future, we plan to investigate how/if our approach extends
to other shape abstractions and to use predicate abstraction for the numeric
program data. We also plan to use our technique for systematic generation of
complex test inputs (similar to [14]) and to characterize when there is loss of
precision introduced by abstraction, for automatic abstraction refinement (simi-
lar to [21]). Moreover we plan to investigate the use of subsumption checking for
compositional analysis of large programs. The presented abstractions were used
in the context of falsification; however, we believe that they have merit in the
context of verification - this could be achieved by storing the abstracted state
and starting the symbolic execution from this abstracted state.
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Abstract. Current research in software model checking explores new
techniques to handle the storage of visited states (usually called the
heap). One approach consists in saving only parts or representations of
the states in the heap. This paper presents a new technique to imple-
ment sound abstract matching of states. This kind of matching produces
a reduction in the number of states and traces explored. With the aim
of obtaining a useful result, it is necessary to establish some correctness
conditions on the matching scheme. In this paper, we use static analysis
to automatically construct an abstract matching function which depends
on the program and the property to be verified. The soundness of the
static analysis guarantees the soundness of verification. This paper de-
scribes the overall technique applied to Spin, the correctness issues and
some examples which show its efficiency.

Keywords: State Explosion, Model Extraction, Static Analysis.

1 Introduction

Using model checking techniques for software verification usually involves the
manual construction of high-level models. This construction process allows de-
signers to exploit many abstraction techniques in order to reduce the size of the
model and its complexity. However, it requires a deep understanding of both
the real software and the modelling language features. Furthermore, the manual
construction process is susceptible to human error due to misunderstandings or
simply programming bugs. These errors are especially subtle because they may
lead to false results in the process of model checking, thus failing to detect the
presence of errors in the program being verified. Recently, many projects are de-
veloping automatic model extraction techniques, that can contribute to solving
this problem with minimal human interaction (see Feaver [8], JPF1 [6] and Ban-
dera [2]). However, extracted models are too cumbersome and have too many
implementation details. Therefore, it is desirable to develop further optimization
(abstraction) techniques in order to reduce the complexity of the model. This
paper is devoted to a new optimization technique which reduces the explored
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state space in models extracted for Spin. The technique is based on the use of
abstractions to implement the matching functions to discard visited states, as
introduced in [7] and [10]. The main novelty of our abstract matching method is
the ability to preserve the verification results, due to how the abstract matching
function is constructed.

The method proposed in [7] consists in hiding specific C variables in such
a way that they are never used to compare global states and decide whether
they have been visited or not. However all the variables are always visible when
making backtracking or producing new states. The mechanism used to implement
this abstraction scheme in [7] is based on a new Promela extension that allows
verifier to hide variables when performing the matching of states.

Our approach is an extension of the implementation mechanism in [7], that
adds soundness to the verification results for a given class of abstraction func-
tions. In particular, we employ a property-oriented static analysis to locate the
set of variables that should be hidden or matched after every execution step. The
analysis is a variant of dependency analysis, called influence analysis, that pro-
duces a set of visible variables for every statement in the model. These variables
should be visible after executing the statement (after producing a new global
state), in such a way that their values are considered to match the global state.

In our method, the correctness conditions and the algorithm used to carry
out the static analysis can be changed depending on the properties to be pre-
served during verification. In the paper we describe methods for three kinds of
properties: a) code reachability, b) safety properties (state properties in Spin)
and c) liveness properties (sequence properties in Spin). For all these cases, sta-
tic analysis is done prior to verification, during the model extraction, producing
a Promela model with property-oriented abstract matching. The new model is
verified as usual with Spin.

The new approach can be directly implemented for other tools that perform
model extraction for Spin (like FeaVer or Bandera), however we are integrating
the static analysis in our tool SocketMC [3]. This tool is a model extractor fo-
cused on verifying concurrent software with well defined-APIs. The experimental
results with the new optimization are very promising.

Regarding another closely related work, the implementation of abstract
matching in [10] is based on applying predicate abstraction to the global states
to be compared, in such a way that explicit hiding is not used. Predicate ab-
straction works matching over-approximations of the states, so the method can
produce unsoundness when verifying properties. For that reason, a refinement
method, assisted with a theorem prover, is used in order to improve the quality
of the analysis.

As far as we know, our work contains valuable contributions compared with
[7] and [10]. For example,

1. The method for obtaining the abstraction function based on static analysis
can be done automatically

2. Static analysis provides a sound function for each given property.
3. The soundness conditions also allow the verification of liveness properties.
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The paper is organized as follows. The preliminary material in Section 2
summarizes the extraction approach in our tool SocketMC, which is used as
our first target tool to include the new optimization. Section 3 gives an overview
of the method and its application to a real example. The soundness of the method
is presented in the next two sections. Section 4 explains the static analysis called
influence analysis, and Section 5 contains a discussion on the correctness of this
approach. Conclusions are given in Section 6.

2 Model Extraction and SocketMC

The aim of tool SocketMC is to verify concurrent C applications that make
an extensive use of operating system facilities through system calls. We have
constructed a Spin oriented model of the behavior of the operating system API.
This model is used to automatically obtain a correct abstraction of the software
that makes use of this API. Following [8], we have defined a mapping from
the original C code to extended Promela. The tool SocketMC automatically
transforms each API call into Promela code preserving the semantics of the calls.
The new Promela model constructed can be verified with standard Spin. Figure 1
shows the main parts of SocketMC, the parser and the model generator. The
figure also shows the relevant role of the formal semantics given to the operating
system API. The semantics is used as a reference to construct a sound Promela
version of each API call.

Our basic mapping scheme works as shown in Figure 2. Given a set of C
processes (main() functions), the mapping from the original code to Promela is
done replacing every process (every main() function) with a proctype() defini-
tion. Then, the body of every proctype() is filled using the Promela extensions
for C code (c decl, c state, c expr and c code). This is done breaking the
original C code in the points where a call to API appears. The final Promela

// Client process

int main() {

struct  hostent  *ptrh;

struct  protoent *ptrp;

struct  sockaddr_in sad;

int     sd;

int     port;

char    *host;

.................

memset((char *)&sad,0,sizeof(sad));

sad.sin_family = AF_INET;

sad.sin_port = htons((u_short)port);

socket(PF_INET, SOCK_STREAM, ptrp-
>p_proto);

..

read(0,cadena,sizeof(cadena));

n = write(sd,cadena,strlen(cadena));

n = read(sd, buf, sizeof(buf));

// Client process

int main() {
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Fig. 1. Extracting models with SocketMC



Abstract Matching for Software Model Checking 185

Clients and servers (C code)

global vars

main()
{
Local vars

C block;
API call;
............
C block;
API call;

}

Functions

global vars

main()
{
Local vars

C block;
API call;
............
C block;
API call;

}

Functions

Additional C global vars;

proctype p1()
{

C global vars
C local vars;

C block;
API call;
............
C block;
API call;

}

proctype p2()
{

C block;
API call;
............
C block;
API call;

}

Clients and servers (Pormela code)

Fig. 2. Mapping scheme in SocketMC

code preserves the sequential execution of every C block code between two sys-
tem calls. Thus, when verifying the model, Spin interleaves blocks and system
calls as atomic instructions. The way of implementing the extraction, together
with the semantic-driven API implementation, ensures the correctness of our
verification model.

By default, the Promela models produced by the first version of the tool
contain all the C variables in the original code. The approach presented in the
following sections is oriented to automatically reduce the set of variables that
should actually be managed to produce the state space. The proposals are im-
plemented as new versions of the two components of SocketMC (the parser
and the model generator in Figure 1), and the result is a new mapping scheme to
extract the final Promela models. It is worth noting, however, that our method to
construct abstract matching functions can be applied to other model extraction
approaches and even to other model checking tools.

3 Sound Abstract Matching

The technique to include abstract matching in Spin and the problem of how
to ensure the validity of abstract matching functions to preserve CTL* was
originally presented by Holzmann and Joshi in [7]. The first issue, the imple-
mentation approach, is presented in the context of the nested depth-first search
algorithm with abstraction described in [1]. The idea is to avoid starting a new
search from a given state if an essentially equal state has been visited before.
In summary, including abstraction when storing visited states works as follows.
Given a global state s, abstraction consists in replacing the usual operation
“add s to States”, that stores it as a visited state, by the new operation “add
f(s) to States”, where f() represents the abstraction function. Function f()
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generates the abstraction of s to be matched and stored (note that in [1] and
[7], operation add has a second argument that does not affect the abstraction
process). It is worth noting that function f() is only used to cut the search tree,
but the exploration is actually realized with the concrete state s, without losing
information. Observe that when we use abstraction during the model check-
ing process as explained above, we explore a subset of the original state space.
Thus, in this case, abstraction produces an under-approximation of the original
model, in contrast to the usual applications of abstraction which produce over-
approximation. In order to assure that the explored tree via abstract matching
is equivalent to the original one, function f() has to satisfy some correctness
conditions.

As proposed in [7], a particular version of function f() is implemented as a
C function which is invoked within a c code construct. The implementation also
benefits from the c track primitive to hide the values of C variables from the
state-vector. Thus, the abstraction function computes abstract representations
of the hidden data and copies the result onto the state-vector.

In [7], the authors do not address any particular method to generate f(),
however they present necessary conditions to define sound abstract functions
that preserve CTL properties. This is the starting point for our work. We provide
implementable methods to produce abstraction functions, which are sound and
oriented to the property to be checked.

Our Abstraction Approach. In our implementation scheme, abstraction
functions are implemented in such a way that they can (automatically) iden-
tify the variables to be hidden from the state-vector in every global state, after
the execution of every verification step. A simple case shows how it works. Let
us consider the following code which can be obtained by a model extractor like
the first version of SocketMC:

proctype p()
{
c_track "&x" "sizeof(int)" "Matched"
c_track "&y" "sizeof(int)" "Matched"
....
L0: initialize();
L1: c_code{x = 1};
L2: c_code{y = x};
...
}

Note that in this code variables x and y are visible in the state-vector. Sup-
pose that we extract the model assuming, by default, that C variables do not
influence the verification of properties. Following this assumption, both variables
x and y are declared as hidden (UnMatched). Consider now that we are inter-
ested in checking a particular property that needs the precise value of x after
executing the code at L1. Then, in this case, the model extracted must keep
variable x visible after executing the instruction at L1, as the following code
shows:
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proctype p()
{
c_track "&x" "sizeof(int)" "UnMatched"
c_track "&y" "sizeof(int)" "UnMatched"
c_track "&x_" "sizeof(int)" "Matched"
c_track "&y_" "sizeof(int)" "Matched"
....
L0: atomic{initialize(); f(L0)};
L1: c_code{x = 1; f(L1)};
L2: c_code{y = x; f(L2)};
...
}
void f(int label)
{

switch(label)
{

......
case L0:

now.x_ = Hide()
now.y_ = Hide()

case L1:
now.x_ = Show(x)

case L2:
now.x_ = Hide()
now.y_ = Hide()

....
}

}

This second version calls f() at any point where the global state should be
stored. This function uses its argument to check the current execution point in
the model. 1 The function updates the variables to be hidden (using Hide())
or updated (using Show()) before matching them with the current set of visited
states, depending on the current label. For instance, variable x can be hidden
until it is updated in L1. However, it is made visible at L1 because it will be used
to update y, and it is again hidden after updating y. The extra variables x and
y are used to store the values of the real (hidden) variables or a representation
of their values. We propose to construct f() using the information provided by a
static analysis of the model. This construction approach for f() can be extended
to models with multiple processes.

Example. We illustrate the use of this technique with a simple case study. In
this example, we use a model of a simple server and check the property P1 which
states that “If the process receives a message END, then it eventually leaves the
main loop”. In Figure 3 (left), it is possible to see the main loop of the server,
including those variables which are visible at each control point in order to verify
P1 with abstract matching.

In the example, READ and CREATERESPONSE are actually non-deterministic
selections returning a message from a limited set. PREPROCESS and POSTPROCESS
are loops simulating heavy work between the reception of the message and the
response.

1 Note that it would not be necessary to pass the label as an argument of f(), if
Promela would allow to access the current label of process p with some code such as
label = now.Pp-> label
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do ::c_expr{enter_loop}->
atomic {

READ(cRead,sock2,ReadBuf, sizeof(ReadBuf));
c_code { f(21);};};

Message_Rx:
// P1: ReadBuf and cRead are visible ----- P2: ReadBuf and cRead are visible

atomic {
PREPROCESS(cRead,ReadBuf);
c_code { f(22);}; };

// P1: ReadBuf and cRead are visible ----- P2: ReadBuf and cRead are visible
atomic {

CREATERESPONSE(cResp,ReadBuf,WriteBuf,cRead);
c_code { f(23);}; };

// P1: WriteBuf and cResp are visible ----- P2: ReadBuf, WriteBuf and cResp are visible
atomic {

POSTPROCESS(cResp, WriteBuf);
c_code { f(24);}; };

// P1: WriteBuf and cResp are visible ----- P2: ReadBuf, WriteBuf and cResp are visible
atomic {

WRITE(cResp,sock2,WriteBuf,cResp);
c_code { f(25);};

};
// P1: cResp is visible ----- P2: ReadBuf and cResp are visible

c_code{ enter_loop=(cResp)>0; f(26); };
// P1: enter_loop is visible ----- P2: ReadBuf and enter_loop are visible
:: else ->

c_code { f(27);}; break;
od;

Fig. 3. Visibility rules for ReadBuf with properties P1 (left) and P2 (right)

Variable ReadBuf is a receiving buffer that may take multiple non-
deterministic values. Suppose that the static analysis to verify P1 determines
that ReadBuf is not significant from CREATERESPONSE on. Thus, if ReadBuf is
hidden after executing CREATERESPONSE, we avoid multiple re-exploration of the
executing paths starting at this point. It is clear that the amount of saved mem-
ory (and time) depends on the range of values ReadBuf may take. The static
analysis decides to hide ReadBuf because property P1 only checks ReadBuf at
label Message Rx.

Suppose that we modify the property in such a way that we need to check
ReadBuf at every control point. For example, assume a new property P2 stating
that “ReadBuf never contains a RETRY message”. In order to verify P2, we
cannot hide variable ReadBuf after CREATERESPONSE. Figure 3 (right) shows the
result of the new model extracted. Note that the set of visible variables associated
to the statements has changed.

Figure 4 shows the performance of our proposal for the previous example.
We have assumed that variables ReadBuf and WriteBuf may take 20 different
values, and that loops PREPROCESS and POSTPROCESS iterate 100 times. The table
shows the state space explored in three cases: (1) without abstract matching (2)
with abstract matching oriented to property P1, and (3) with abstract matching
oriented to property P2.

Figure 5 explains the different reduction results obtained for the three cases
described above. When we do not use abstract matching, we have 20x20 different
traces to explore at the end of the loop (left column). If we hide WriteBuf after
WRITE, the number of traces is divided by 20 (right column). Additionally, when
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No Abstract
Matching 

Abstract Matching. 
(ReadBuf partial hiding) 

Abstract Matching 
(ReadBuf fully visible) 

State-vector 152 bytes 28 bytes 28 bytes 
Errors 26753 23 862 
States stored 787705 117 1761 
Total memory  90.929 MB 2.724MB 5.389 MB 
Elapsed time 14:26.44 0:00.72 0:03.33 

Fig. 4. Test Results

Fig. 5. Reachability trees for the case study

ReadBuf is partially hidden, we have only one representative for all the traces
(center column). This phenomenon also happens with other variables and it is
the main reason for state reduction.

Optimizations. The actual representation of the visible variables is a bit more
complex than shown before. Instead of using duplicate variables (like x and y ,
in the previous example), we employ a vector as described below.

void f(int label) {
switch (label){

...
case 21: now.idVector[0]=Hide();

now.idVector[1]=ShowVariable(1, sizeof(cRead), &cRead);
now.idVector[2]=Hide();
...}
break;

... }
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Global variable idVector is in fact the abstract representation of the visible
variables which are implemented as a vector of identifiers. Auxiliary function
ShowVariable() computes the identifier associated to the current value of a
given variable, while the Hide() function returns always a null identifier.

A lookup table allows us to map identifiers to values. This table is dynam-
ically updated in such a way that it always keeps an entry for every reached
value. In addition, the table is never included in the usual data structures of
the model checker (stack and heap). It can be seen as a global data structure
for all execution paths. The results shown in Figure 4 were obtained with this
technique.

Experimental results show that our approach to automatically construct ab-
stract functions is very promising, however we still have to discuss about how to
ensure soundness. The following sections are devoted to this key issue.

4 Static Analysis

In this section, we describe the static analysis from which we construct sound
abstract matching functions. In particular, we develop the so-called influence
analysis (IA) to annotate each program point with a set of significant variables
needed to correctly analyze a given property. This static analysis is a refinement
of the live variables analysis given in [9] (adapted to the case of Promela) where
the properties of interest to be verified are taken into account. Our analysis is
also related to cone of influence reduction, described in [4], However, as far as
we know, the cone-of-influence technique does not take into account that while
a given variable could be visible for some states it then could become invisible
for successor states of the same trace.

Note that in the analysis we do not distinguish between C variables and
pure Promela variables, although currently we have only implemented abstract
matching for C variables. In order to simplify the presentation, we only use the
traditional Promela syntax for the variables and we have omitted the explicit
treatment of some Promela instructions such as those dealing with channels (in-
cluding rendez-vous).

The influence analysis is used to decide which variables should be visible
at each program point during the model checking process. It determines for
each program control point the variables which influence a given set of variables
V of interest. The analysis then records the variables which are alive wrt a
particular property. Thus, if a variable does not affect any variable in V at a
given program point, we may hide it since its current value is not relevant for the
verification.

Clearly, the most precise analysis is the one attaching the smallest set of
variables to each program point. In the following sections, we show different
versions of IA. Each extension gives us a different precision degree for the analysis
and the abstract matching function induced preserves a different set of program
properties. The first analysis IA1 is the most precise one, it produces the best
abstract matching function, the one inducing the best state space reduction.
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However, IA1 only preserves the code reachability tree of the original Promela
model. In addition, since global variables must be dealt with very carefully, IA1
assumes that the model under analysis has only local variables. The second
analysis IA2 produces bigger sets of variables, but it preserves safety properties.
The third analysis IA3 studies the case of models with global variables, and,
finally, IA4 is the least precise analysis, but in contrast, it preserves liveness
properties.

4.1 Influence Analysis for Promela Models

Given a Promela program M , the goal of IA is to associate each program point
in M with the least set of variables whose value is needed to analyze M .

Let V be the set of program variables. Informally, given x, y ∈ V , we say
that variable y influences variable x at a given program point, if there exists an
execution path in M from this point to an assignment x = exp and the current
value of y is used to calculate exp, that is, if the current value of y is needed to
construct the value of x in the future. In Section 5, when we prove the correctness
of the analysis, we give a formal definition of the influence notion.

In this section, we focus on describing the four above-mentioned IA analyses.
We first define the input language and some previous notions.

Let Inst be the set of all valid Promela instructions including the Basic state-
ments (boolean expressions, assignments, and input/output instructions over
channels), If, Do, Atomic, Unless statements, etc. In the sequel, we do not dis-
tinguish between C variables and pure Promela variables. We also consider that
blocks of C instructions inside c code are Basic instructions, and that the C
boolean expressions are managed as pure Promela boolean expressions. In order
to simplify the analysis, we assume that Do instructions are implemented using
If and goto statements. In addition, we assume that branches of If instructions
always begin with a boolean expression followed by at least one statement. We
use true and skip to complete the instruction when necessary (for example, see
the codes of Figure 6). Finally, when an else branch appears, we assume that it

active proctype p1(int n) {
int x = n;

int y = 1;

L1:if

:: x > 0 -> L2: x = x - 1;

L3: y = 2 * y; goto L1

:: else -> L4: printf(y); goto End:

fi;

End:

}

active proctype p2() {
int x1,x2,x3,x4;

L1:if

:: true -> L2: x2 = 0;

:: true -> L3: x2 = 1;

fi;

L4: x1 = x2;

L5: if

:: x3 < 2 -> L6: x1 = x1 + 1; goto L5;

:: else -> L7: skip;

L8: if

:: true -> L9: x4 = 0;

:: true -> L10: x4 = -1;

fi;

L11: if

:: x4 >= 0 -> L12: assert(x1 == 2);

:: else -> L3: skip

fi

fi;

End:

}

Fig. 6. Two Promela processes
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1

2

3

4

End

x>0 else

x = x - 1

y = 2 * y

Prinf(y)

x

x

x

Fig. 7. Result of IA1 for process p1

has been replaced by the corresponding boolean expression. In the sequel, Bool-
Exp will denote the set of boolean expressions that can be constructed with the
usual arithmetical and boolean operators and with the constant and variables of
the model.

As commented above, the first approach IA1 is focussed on preserving the
code reachability tree of M , that is, the abstract matching function induced by
IA1 should preserve each possible execution path in the original model. Since the
control flow is determined by boolean expressions and If instructions, in order
to simulate all the execution paths, we need to record all possible values of the
variables appearing in the guards of the control statements.

Let us define the set Init ⊆ V of all program variables appearing in some
boolean expression in M . We perform the influence analysis IA1 attaching each
program counter of M with the set of program variables influencing some variable
in the set Init.

For instance, set Init is respectively defined as {x} and {x3, x4} for the
Promela codes of processes p1 and p2 given in Figure 6. In addition, Figure 7
shows the intended result of IA1 for p1. For this process, the static analysis
associates the set {x} with the labels L1, L2, and L3. The usefulness of the
analysis is clear. If we are interested in knowing whether a particular label of
process p1() is reachable, we only have to store variable x at labels L1, L2, and
L3. In particular, variable y may be completely hidden because its value is not
relevant for this analysis.

The rest of this section is devoted to formalizing IA1. Let M = P1|| · · · ||Pn be
the Promela model to be analyzed, where each Pi denotes a concurrent process
declared in M . We assume that all instructions of the Promela model M to be
analyzed are labelled, i.e., each one has the form L : ins where L ∈ L is a unique
label of the instruction ins. Labels may be defined by the user or automatically
assigned. End denotes the set of user-defined labels starting with end. The code
of each process is finished with a label L ∈ End. Note that labels represent
program counters of processes. For the sake of simplicity, we assume that labels
in each Promela process are different.
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Function I : L → Inst returns the basic/If instruction following a label. For
instance, considering the code of process p2 of Figure 6, I(L6) = x1 = x1 + 1
and I(L1) = if :: true− > L2 : x2 = 0; :: true− > L3 : x2 = 1;fi ;.

Let us define function next : L → L which associates each label l with
the label pointing to the basic/If instruction following I(l). For example, in the
process p2 of Figure 6, next(L2) = L4, and next(L6) = L5. Function next is
well defined because we always apply it to labels pointing to basic instructions,
although it may return labels pointing to a basic/If statement.

Given any expression or instruction, we denote with var(e) ⊆ V the set of
program variables appearing in e. In order to simplify the description, we first
define how to apply the static analysis to a simple process P , and then, we
extend it to a whole program M composed of several concurrent processes. We
also assume that M contains only local variables, and then we again extend the
analysis to the case of global variables.

The static analysis IA1 is formally constructed as the least fixed point of
function F1 : ℘(V)L → ℘(V)L which represents a transformation function which
transforms vectors of |L| components, where |L| is the number of labels in the
system. Each component that corresponds to a label is a set of variables.

Given −→s = {sl|l ∈ L} ∈ ℘(V)L, the l component of −→s is denoted as −→s (l)
and it corresponds to a subset of variables attached to label l at a given moment
during the computation of IA1. Similarly, we denote the l-component of F1(−→s )
as F1(−→s )(l). F1 is a backward analysis, that is, it extracts information follow-
ing the reverse control flow of the program. Thus, to calculate the significant
variables at a given label l ∈ L, we have to collect all variables which are needed
by any execution path starting at this point. Recall that a variable is needed at
l if its value is needed for executing the next instruction I(l) or for executing
any instruction following I(l). Considering this, given −→s ∈ ℘(V)L we construct
F1(−→s )(l) making use of function F1∗, defined below, as follows:

F1(−→s )(l) = F1∗(I(l),−→s (next(l))) if I(l) ∈ Basic and
F1(−→s )(l) = ∪n

i=1F1∗(bi,
−→s (li))if I(l) = if :: b1 → l1 : · · · :: bn → ln : · · · ;fi

where F1∗ : Basic × ℘(V) → ℘(V) calculates the significant variables before
executing a basic instruction as:

F1∗(x = exp, s) =
{

s if x �∈ s
s − {x} ∪ var(exp) if x ∈ s

F1∗(bool, s) = s ∪ var(bool), bool being a Boolean expression

That is, assignment x = exp modifies set s only if it has been deduced that x
influences some variable in Init. In that case, the effect of x = exp consists of
introducing in s all variables appearing in exp, excluding x because its value
is changed in the assignment. In addition, all variables appearing in a boolean
expression influence variables in Init (in fact, they belong to Init).

Define ∀l ∈ L.sl = ∅, and consider the initial vector −−→sinit = {sl}l∈L. Then, the
static analysis IA1 ∈ ℘(V)L is given by the least fixed point of the equation −→s =
F1(−→s ) which can be calculated as the limit of the sequence −−→sinit, F1(−−→sinit), · · · .
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Proposition 1. The following assertions regarding sequence −−→sinit, F1(−−→sinit), · · ·
hold: (1) ∀i ∈ N, F1i(−−→sinit)⊆F1i+1(−−→sinit); (2) ∃k ≥ 0, F1k(−−→sinit)=F1k+1(−−→sinit).

Now, consider a Promela program M = P1|| · · · ||Pn involving the concurrent
execution of several processes. Let IAi

1 be the vector produced by the Influence
Analysis for the process Pi. If we denote with Li the set of labels appearing in
process Pi, then a program point of M may be represented by a tuple (l1, · · · , ln)
with li ∈ Li being the current program counter of process Pi. Considering this,
we define function IA1 : L1 × · · · × Ln → ℘(V) as: IA1(l1, · · · , ln) =

⋃n
i=1 IAi

1(li)
That is, the information regarding analysis IA1 at program counter (l1, · · · , ln)
is the union of all variables collected by IA1 for each process Pi at label li.

Example. The following code is a simplified version of the example shown in
Fig 3. Observe that when applying analysis IA1 to this code, variables become
visible/unvisible following the rules given by function F1∗. For instance, cResp
is needed before evaluating the test CResp > 0, but before assignment cResp =
WriteBuf is not needed because its value is rewritten. The same rule is applicable
to the rest of the variables.

do :: enter_loop ->
ReadBuf = any();

// ReadBuf is visible
WriteBuf = ReadBuf;

// WriteBuf is visible
cResp = WriteBuf;

// cResp is visible
enter_loop = (cResp >0);

:: else -> break;
od;

4.2 Extending the Influence Analysis IA1

In this section, we propose several refinements of IA1 which are able to preserve
more interesting temporal properties and to take global variables into account.
Observe that the construction of IA1 is based on function F1∗, which propagates
the information about the needed variables in a bottom-up manner, and on
the initial vector −−→sinit which is used to start the fixed point computation. The
variants of IA1 presented below are constructed by modifying function F1∗ and
by considering different initial vectors.

Preserving State Properties. The first extension IA2 preserves state prop-
erties specified using the assert statement. For instance, assume that we want
to analyze the assertion x1 == 2 of process p2 in the right-hand column of Fig-
ure 6. It is easy to see that we need to store not only the variables influencing the
boolean expressions in the code in order to completely simulate the reachability
tree, but also those that influence the variables in the assert statement (vari-
able x1 in the example). Figure 8 shows the intended result of IA2 for process
p2. Observe that variable x1 is attached to some labels of the process, since its
value is needed at label L12. Thus, our purpose is to extend analysis IA1 to take
into account variables appearing in the assertions to be validated in the code
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Fig. 8. Result of IA2 for process p2

during execution. It is worth noting that at this point, we are still assuming the
model only contains local variables. To extend IA1, it is enough to redefine F1∗

as function F2∗ defined as:

F2∗(x = exp, s) =
{

s if x �∈ s
s − {x} ∪ var(exp) if x ∈ s

F2∗(bool, s) = s ∪ var(bool), bool being a Boolean expression
F2∗(assert(b), s) = s ∪ var(b), assert(b) being an assertion expression

Now, we construct IA2 using F2∗ as IA1 was defined from function F1∗, and
considering the same initial vector −−→sinit. The resulting analysis is able to preserve
the assertions as desired.

Dealing with Global Variables. As mentioned above, the previous descrip-
tion is only applicable to models without global variables. It is important to
distinguish between global and local variables. Local variables are easier to ana-
lyze because their use is localized inside a unique process, and the static analysis
follows the control flow of isolated processes. In contrast, the code regarding a
global variable may be distributed through many different system processes.
Thus, it is possible that some variables used to construct a given global variable
in a process are erroneously hidden by the static local analysis. In order to solve
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this problem, we consider the set GM ⊆ V of all global variables appearing in
some boolean expression of some process. Now we modify −−→sinit and use

−−→
sg

init

defined as {sl|l ∈ L} where ∀l ∈ L.sl = GM .
With this definition for the initial vector, static analysis is able to extract

all variables influencing global variables which are critical for the control flow
of the model. In the following, we call IA3 to this extension. Observe that if we
consider assertions as boolean expressions, this analysis is also able to preserve
the state properties described above.

Preserving Trace Properties. Analysis IA3 may be extended to IA4 which
is intended to preserve generic temporal properties. Assume that f is a LTL
property. In order to preserve the evaluation of f we have to make all (global)
variables of var(f) always significant for the analysis. Thus, since variables ap-
pearing in the formula are always saved, the formula may always be correctly
checked. Then, function F4∗ takes into account variables in the temporal for-
mula f to be checked as follows:

F4∗(x = exp, s) =

⎧⎨⎩
s if x �∈ s
s − {x} ∪ var(exp) if x ∈ s, x �∈ var(f)
s ∪ var(exp) if x ∈ s, x ∈ var(f)

F4∗(bool, s) = s ∪ var(bool), bool being a Boolean expression

Now, define
−−→
s′init = {s′l|l ∈ L} where ∀l ∈ L, sl = GM . Note that, for practical

reasons, we are assuming that all variables in f are global. Thus, analysis IA4 is
constructed following the approach presented in Section 4.1, but using function
F3∗ and the initial vector

−−→
s′init.

Note that, following the ideas in [11], we can improve the influence analysis
by removing variables from the property f when they are not necessary. In that
way we can adjust dynamically the visible variables to be taken into account.

5 Correctness Issues

In this section, we formalize the correctness of the static analysis developed in
Section 4. We start establishing the semantics of a simplified version of Promela.

5.1 A Simplified Semantics for Promela

Assume that M = P1|| · · · ||Pn is a Promela system constituted by the concurrent
execution of processes Pi(1 ≤ i ≤ n). If V alue represents the set of all possible
values for the variables in V , we define the set Env = V → V alue of all possible
functions giving values to the elements of V . In the sequel, we call environments
to the elements of Env. Thus, given e ∈ Env and v ∈ V , e(v) denotes the value
given to v by the environment e. In addition, e[n/v] denotes the environment
that is equal to e for all variables except for v whose value is n.

Given a process P , we define the set of process states S tate = L×Env as the
set of pairs 〈l, e〉 where l ∈ L is the program counter of P and e : V → V alue∪⊥
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BoolExp
I(l)∈BoolExp,eval(I(l),e)=true

〈l,e〉�−→P 〈next(l),e〉 Assign
I(l)=x=exp,eval(exp,e)=n
〈l,e〉�−→P 〈next(l),e[n/x]〉

Non-det
I(l)=if ::b1→l1:···::bn→ln:··· ;fi,eval(bi,e)=true

〈l,e〉�−→P 〈li,e〉

IntLeaving
〈li,e〉�−→P 〈l′i,e′〉

〈l1,··· ,li,··· ,ln,e〉�−→S〈l1,··· ,l′i,··· ,ln,e′〉

Fig. 9. Process-Level and System-Level Rules

is an environment restricted to the variables accessed by P . Thus, v ∈ V is given
the special value ⊥ if P cannot access to it (v is local to a different process).

Figure 9 shows a simplified version of the complete semantics for Promela
processes. We have included only the most relevant statements for the sake of
simplicity. The whole semantics may be found in [5]. The simplified transition
relation for the process level is defined as �−→P⊆ State × State. In the figure,
we use the function eval : Expr × Env → Value to evaluate expressions, where
Expr represents the set of all Boolean and arithmetical expressions that may be
constructed with the usual operators and the constants and variables of M .

Given a Promela system M = P1|| · · · ||Pn, we define the set Conf = Ln×Env
of all global states of M . Thus, a configuration consists of the current program
counter of each process in M and the global environment giving the current value
to all model variables. Figure 9 also shows the system-level transition relation
�−→S⊆ Conf ×Conf . This rule realizes the interleaving of the system processes
in execution.

5.2 Correctness Results for IA1

In this section, we prove the results showing the usefulness of our proposal. We
start by giving some necessary definitions.

Definition 1. We say that variable x ∈ V is redefined at label l ∈ L, and write
it as redef(x, l), iff I(l) = x = expr, that is, if x is given a new value at l.

Definition 2. Given x ∈ V and l1i ∈ L, we say that x is needed at l1i for IA1
and write it as needed1(x, l1i) iff there exists a finite path 〈· · · , l1i, · · · , e1〉 �−→S

· · · �−→S 〈· · · , lki, · · · , ek〉 such that ∀1 ≤ j ≤ k.¬redef(x, lji) and it holds that

1. I(lki) ∈ BoolExp and x ∈ var(I(lki))
2. I(lki) = y = exp, x ∈ var(exp) and needed1(y, lki)

That is, variable x is needed by the analysis IA1 at a given program counter
if its current value is used in some boolean expression (case 1) or it is used to
calculate some variable further needed by the static analysis (case 2).

Proposition 2 proves that IA1 attaches each label with all the variables needed
at this point.
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Proposition 2. Given x ∈ V and l ∈ L, if needed1(x, l) then x ∈ IA1(l).

Once we have defined the notion of variable needed at a program location, we
may formalize the variables that should be stored at program labels.

Definition 3. Consider l ∈ L such that I(l) is a basic instruction (a Boolean
expression or an assignment) or a non-deterministic selection. Then, we define
the set nvar(l) = {x ∈ V|needed1(x, l)}.

The following proposition proves that the Influence Analysis associates each
process label with the variables needed (wrt the previous definition) to execute
the following instruction.

Proposition 3. Let P be a Promela process and consider the static analysis for
the code reachability tree IAP

1 given in Section 4.1. Let l ∈ L be a label of P then
nvar(l) ⊆ IAP

1 (l).

We may extend Proposition 3 to Promela systems as follows:

Corollary 1. Let M = P1|| · · · ||Pn be a Promela system and consider the static
analysis for the code reachability tree IA1 given in Section 4.1. Let (l1, · · · , ln) ∈
Ln be a program counter of M then ∪n

i=1nvar(I(li)) ⊆ IA1(l1, · · · , ln).

Given V ⊂ V , we define the equivalence relation ∼V ⊆ Env × Env as follows:
e1 ∼V e2 ⇐⇒ ∀v ∈ V.e1(v) = e2(v)

Proposition 4. Consider two environments e1, e
′
1 ∈ Env and two labels l, l′ ∈ L

such 〈l, e1〉 �−→P 〈l′, e′1〉. Then if e1 ∼IA1(l) e2, there exists e′2 ∈ Env such that
〈l, e2〉 �−→P 〈l′, e′2〉 and e′1 ∼IA1(l′) e′2.

We may extend the previous proposition to system configurations as follows.

Corollary 2. Consider two environments e1, e
′
1 ∈ Env and two labels li, l

′
i ∈ L

such 〈l1, · · · , li, · · · , ln, e1〉 �−→S 〈l1, · · · , l′i, · · · , ln, e′1〉. Define
−→
l =(l1, · · · , li, · · · ,

ln) and
−→
l′ = (l1, · · · , l′i, · · · , ln). Then if e1 ∼IA1(

−→
l ) e2, there exists e′2 ∈ Env

such that 〈l1, · · · , li, · · · , ln, e2〉 �−→S 〈l1, · · · , l′i, · · · , ln, e′2〉 and e′1 ∼
IA1(

−→
l′ )

e′2.

The following theorem gives us the desired correctness result for analysis IA1.

Theorem 1. Assume that 〈l11, · · · , ln1, e1〉 �−→S · · · �−→S 〈l1k, · · · , lnk, ek〉 is a
finite path. For all i ≤ k, denote

−→
li = (l1i, · · · , lni). Then, if e′1 ∈ Env satisfies

that e1 ∼
IA1(

−→
l1 ) e′1, then there exists a finite path 〈l11, · · · , ln1, e

′
1〉 �−→S · · · �−→S

〈l1k, · · · , lnk, e′k〉 such that ∀1 < j ≤ k.ej ∼IA1(
−→
lj ) e′j.

Observe that following Theorem 1, the reachability tree may be pruned. Every
new state with visible variables matching one state previously stored is con-
sidered as a visited state. The proof of the preservation of properties between
the original and the reduced state spaces should take into account the search
algorithm, for instance, the algorithm in [1].
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5.3 Correctness Results for IA2, IA3 and IA4

In this section, we establish the main results proving the correctness of analysis
IA2, IA3 and IA4. The proofs of the corresponding theorems are similar to the
ones given for IA1 in the previous section. Observe that the correctness result
for IA3 does not appear because it is similar to Theorem 1.

Theorem 2 (Correctness for IA2). Assume that 〈l11, · · · , ln1, e1〉 �−→S · · ·
�−→S 〈l1k, · · · , lnk, ek〉 is a finite path. In addition, assume that there exists an
index j such that I(ljk) = assert(b) for some boolean expression b. For all i ≤ k,
denote

−→
li = (l1i, · · · , lni). Then, if e′1 ∈ Env satisfies that e1 ∼IA2(

−→
l1 ) e′1, then

there exists a finite path 〈l11, · · · , ln1, e
′
1〉 �−→S · · · �−→S 〈l1k, · · · , lnk, e′k〉 such

that ∀1 < j ≤ k.ej ∼IA2(
−→
lj ) e′j and eval(b, ek) = eval(b, e′k).

Theorem 3 (Correctness for IA4). Let f be an LTL formula. Assume that
σ = 〈l11, · · · , ln1, e1〉 �−→S 〈l12, · · · , ln2, e2〉 �−→S · · · is an infinite path from
〈l11, · · · , ln1, e1〉. For all i ≥ 1, denote

−→
li = (l1i, · · · , lni). Then, if e′1 ∈ Env

satisfies that e1 ∼
IA4(

−→
( l1))

e′1, then there exists a path σ′ = 〈l11, · · · , ln1, e
′
1〉 �−→S

〈l12, · · · , ln2, e
′
2〉 �−→S · · · such that ∀1 < j.ej ∼IA4(

−→
lj ) e′j and σ |= f ⇐⇒ σ′ |=

f , |= being the standard satisfiability relation defined for evaluating LTL formulas
on execution traces.

6 Conclusions and Future Work

State space explosion in explicit model checking can be partially solved with
techniques which change the usual algorithm to identify visited states. Instead of
comparing every new global state with the states in the heap, abstract matching
is able to compare only parts of the new state. In that way, it is possible to
cut some execution paths and reduce the time and memory required to check a
particular property. However, the results are only reliable when the abstraction
method has been proved to be sound.

In this paper, we have presented the theoretical framework to ensure that
static analysis can provide enough information to construct sound abstract func-
tions for a given property. Furthermore, we provide evidence that, in the context
of model extraction for Spin, these functions can be automatically produced and
included in the final model.

We have obtained the experimental results with the tool SocketMC, al-
though static analysis was still done by hand. At the moment, we are imple-
menting these static analysis algorithms as an extension to SocketMC. Future
work is oriented to integrate the new version of SocketMC with our tool for
data abstraction αSpin, in such a way that we can make more efficient model
checking of C programs.
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Abstract. The Stop-and-Wait protocol (SWP) has two (unbounded)
parameters: the maximum sequence number (MaxSeqNo) and the max-
imum number of retransmissions (MaxRetrans). This paper presents an
algebraic method for analysis of the SWP for all possible values of these
parameters. Model checking such a system requires considering an infi-
nite family of models, one for each combination of parameter values, and
thus an infinite family of state spaces (reachability graphs). These reach-
ability graphs are represented symbolically by a set of algebraic formulas
in MaxSeqNo and MaxRetrans. This result is significant as it provides a
complete characterisation of the infinite set of reachability graphs of our
SWP model in both parameters, allowing properties to be verified for
the infinite class. Verification of a number of properties is described.

Keywords: Stop and Wait Protocols, Infinite Families of Systems, Para-
metric Reachability Graphs, Coloured Petri Nets.

1 Introduction

Stop-and-Wait is an elementary and well-known form of flow control [20,22] used
by communication protocols to prevent buffer overflow in the receiver. In practice
Stop-and-Wait is often used with checksums to detect transmission errors and
a timeout/retransmission scheme using sequence numbers, such as Automatic
Repeat ReQuest [22], for error recovery.

The Stop-and-Wait mechanism forms the basis of many practical data trans-
fer protocols, such as the Internet’s Transmission Control Protocol (TCP) [19].
An understanding of how these mechanisms work and how they may fail is
thus useful for the verification of more complex protocols like TCP. These pro-
tocols have a number of parameters, such as the maximum sequence number
(MaxSeqNo) or the maximum number of retransmissions (MaxRetrans). The
value of these parameters may vary depending on the application (e.g. TCP has
a 32 bit sequence number, whereas others may use a 3 bit sequence number). It
is thus of interest to verify these protocols for all values of these parameters.
� Partially supported by an Australian Research Council (ARC) Discovery Grant,
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Petri nets have proven to be a suitable formal method for protocol verifica-
tion [2,3,6,15,17]. A Coloured Petri net (CPN) [14,16] model of the SWP, para-
meterised by MaxSeqNo and MaxRetrans, was developed and analysed in [4,5,6]
following the protocol verification methodology presented in [6]. Because the
model parameters are unbounded there is an infinite set of CPN models to
verify, and state explosion [23] prevents analysis for all but small parameter val-
ues. Thus we were motivated to find a way to verify the SWP for any finite
(but unbounded) value of the parameters. In [12] we presented a novel technique
of representing the reachability graphs (RGs) of the SWP CPN symbolically in
the MaxSeqNo parameter (with MaxRetrans=0) using algebraic expressions, and
verified a number of properties directly from the expressions, including language
equivalence to the service, for all values of the unbounded MaxSeqNo parameter.

Related work on symbolic verification considers only the MaxRetrans parame-
ter. Abdulla et al [1] verify the Alternating Bit Protocol (ABP) (MaxSeqNo=1)
with unbounded retransmissions and a variant called the Bounded Retransmis-
sion Protocol in which MaxRetrans is modelled nondeterministically. In [7,8] we
used a tool called FAST (Fast Acceleration of Symbolic Transition Systems) [9]
to model the SWP and analyse it symbolically. We were successful when MaxRe-
trans was an unbounded parameter with MaxSeqNo fixed to small values (1 to 5),
and when MaxSeqNo was an unbounded parameter but with MaxRetrans fixed
to 0. FAST did not return a result when both MaxSeqNo and MaxRetrans were
unbounded parameters. In [24] a variant of the ABP with arbitrary MaxRetrans
and operating over channels with a capacity of one message only, was verified us-
ing Valmari’s Chaos-Free-Failures-Divergences (CFFD) equivalence. In contrast,
our model operates over unbounded lossy ordered channels (similar to [1]) and
explicitly considers any maximum sequence number (not just the alternating
bit) and any maximum number of retransmissions.

In this paper, the work in [12] is significantly extended by obtaining al-
gebraic expressions for the infinite set of RGs of the SWP operating over an
ordered medium over both the MaxSeqNo and MaxRetrans parameters. A sketch
of the proof of correctness is given, details of which can be found in [11]. The
contribution of this paper is threefold. Firstly, we further develop the novel alge-
braic representation method from [12]. Secondly, we provide the aforementioned
symbolic representation. Inclusion of the MaxRetrans parameter represents a
substantial increase in the complexity of the algebraic expressions. This can be
gauged by the size of the RG, which grows linearly in MaxSeqNo but quartically
in MaxRetrans [10, 12]. Previous work dealt with the linear growth in MaxSe-
qNo only, whereas this paper also deals with the quartic growth in MaxRetrans.
Thirdly, we sketch the verification of a number of properties directly from the
algebraic expressions. The authors are not aware of any previous attempts to
obtain an explicit algebraic representation for the family of RGs for arbitrary
unbounded values of the MaxSeqNo and MaxRetrans parameters for the class of
Stop-and-Wait protocols.

The rest of this paper is organised as follows. Section 2 presents our paramet-
ric SWP CPN model. The necessary notational constructs and lemmas regarding
model behaviour are presented in Section 3. The parametric algebraic expressions
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of the RG are presented in Section 4, followed by a description of the verifica-
tion of a number of properties. Conclusions and future work are presented in
Section 5. Familiarity with basic CPN concepts and terminology is assumed. For
introductions to CPNs the reader is referred to [14, 16].

2 The Stop-and-Wait Protocol CPN Model

The SWP is modelled using Coloured Petri nets [14, 16], a form of Petri net in
which tokens are arbitrarily complex data values. The CPN diagram is shown in

receiver_state

Receiver

r_ready

send_mess receive_mess

receive_ack

[rn = NextSeq(sn)]

send_ack

send_seq_no

Seq

0

mess_channel

MessList

[]

ack_channel

MessList

[]

mess_loss

[Contains(queue,sn)]

ack_loss

[Contains(queue,rn)]

timeout_retrans

[rc < MaxRetrans]

retrans_counter

RetransCounter

0

sender_state

Sender

s_ready

receive_dup_ack

[rn <> NextSeq(sn)]

Sender Network Receiver

recv_seq_no

Seq

0

sn

queue^^[sn] sn::queue r_ready

if(sn = rn)
then NextSeq(rn)
else rn

r_ready

queue^^[sn]

rc rc+1

rc

0

wait_ack

s_ready

wait_ack

queue

Loss(queue,sn)

rn::queue queue^^[rn]

sn

NextSeq(sn)

rn::queue

sn

sn

queue

queue
queue

queue

queuequeue

queue

Loss(queue,rn)

s_ready

wait_ack

rn

rnrn

process

process

val MaxRetrans = 0;
val MaxSeqNo = 1;

color Sender = with s_ready | wait_ack;
color Receiver = with r_ready | process;
color Seq = int with 0..MaxSeqNo;
color RetransCounter = int with 0..MaxRetrans;
color Message = Seq;
color MessList = list Message;

var sn,rn : Seq;
var rc : RetransCounter;
var queue : MessList;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;
fun Contains([],sn) = false
| Contains(m::queue,sn) = if(sn=m) then true else Contains(queue,sn);

fun Loss(m::queue,sn) = if(sn=m) then queue else m::Loss(queue,sn);

Fig. 1. A CPN of the Stop-and-Wait Protocol operating over an in-order medium
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Fig. 1 along with all the declarations used in the inscriptions of the CPN diagram.
The inscription language is a variant of Standard ML [21]. The two parameters
MaxRetrans and MaxSeqNo can be seen at the top of the declarations in Fig. 1.
This model is the same as the one presented in [12], with the exception of loss.
This change is motivated and described below. (The focus of this paper is not
the modelling of SWP with CPNs. A detailed description of the model is given
in [12] and hence omitted here.)

The channels are modelled as lists manipulated by the arc inscriptions as
First-In-First-Out (FIFO) queues in places mess channel and ack channel. Tran-
sitions mess loss and ack loss model loss, both in the network (buffer overflow in
a router) and by discarding messages and acknowledgements with transmission
errors (checksum failures). Unlike the model in [12], loss can occur anywhere in
the message and acknowledgement queues, not just from the head. This is done
via nondeterministic binding of variables sn and rn and the function Contains
in the guard of each loss transition, to ensure that sn and rn are only bound
to values that are present in the channels. The removal of the message is via
function Loss in the arc inscriptions.

Motivation is provided by it being a more general model, suited to the
TCP environment, where loss can occur anywhere in the network due to e.g.
router congestion, in addition to loss caused by detection of errors. It turns
out that this model of loss is easier to formalise in the algebraic expressions in
Section 4.

3 Notation and Model Properties

This section introduces notation and proves a number of properties of the SWP
CPN model required for the proof of correctness of the algebraic formula pre-
sented in Section 4.

3.1 Marking and Arc Notation

We begin by defining the RG of a CPN. In CPN terminology, a reachability
graph is often called an occurrence graph (OG).

Definition 1 (Reachability Graph). The OG of a CPN with initial marking,
M0, and a set of binding elements, BE, is a labelled directed graph OG = (V,A)
where

1. V = [M0〉 is the set of reachable markings of the CPN; and
2. A = {(M, (t, b), M ′) ∈ V ×BE×V |M [(t, b)〉M ′} is the set of labelled directed

arcs, where M [(t, b)〉M ′ denotes that the marking of the CPN changes from
M to M ′ on the occurrence of transition t with binding b, (t, b) ∈ BE.

The parameterised CPN and its RG are denoted by CPN(MS,MR) and
OG(MS,MR) given by the following definition:
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Definition 2 (Parameterised CPN and Reachability Graph). For MS ∈
N+ and MR ∈ N, CPN(MS,MR) is defined as the Stop-and-Wait Protocol CPN
of Fig. 1 with MaxSeqNo = MS and MaxRetrans = MR. The reachability graph
of CPN(MS,MR) is denoted by OG(MS,MR) = (V(MS,MR), A(MS,MR)).

In order for the notation for markings and arcs defined below to be correct,
we must prove that each place in the SWP CPN with initial marking M0 as
illustrated in Fig. 1 always contains exactly one token.

Lemma 1. For all reachable markings of CPN(MS,MR) and all allowable values
of MS and MR, each place in the CPN diagram contains exactly one token, i.e.
∀MS ∈ N+, ∀MR ∈ N, ∀M ∈ V(MS,MR), |M(sender state)| = |M(receiver state)|
= |M(retrans counter)|=|M(mess channel)|=|M(ack channel)|=|M(send seq no)|
= |M(recv seq no)| = 1.

Sketch of Proof. Proof is by direct inspection of Fig. 1. Consider the recv seq no
place. M0(recv seq no) = 1‘0 and so |M0(recv seq no)| = 1. The marking of this
place can only be changed by transitions receive mess and send ack. The occur-
rence of these transitions either replaces one value by another (the receive mess
transition when sn=rn) or does not change the marking (the receive mess tran-
sition when sn �=rn and the send ack transition). The value of MS may affect the
token value (via function NextSeq) but it does not affect the number of tokens
removed or added (always 1). Hence |M(recv seq no)| = 1 for all markings. Simi-
lar arguments reveal that this property also holds for the remaining 6 places. ��

The following function converts a singleton multiset into its basis element:

Definition 3 (Singleton Multiset to Colour). Let SMS1
be the set of all

singleton multisets over a basis set S : SMS1
= {{(s, 1)}|s ∈ S}. A function that

converts a singleton multiset to its basis element is given by fc : SMS1
→ S,

where fc({(s, 1)}) = s.

In addition, the following notational conventions are used throughout this paper:

– M [t〉 is used as shorthand to represent that transition t is enabled by marking
M for some binding of variables b, such that M [(t, b)〉, (t, b) ∈ BE;

– |fc(M(p))| is the length of the list on places p ∈ {mess channel, ack channel};
– ij represents j repetitions of the message (or acknowledgement) with se-

quence number i in the message (or acknowledgement) channel;
– ⊕MS represents modulo MS + 1 addition; and
– &MS represents modulo MS + 1 subtraction.

The markings of our SWP CPN can be classified into types based on the
four possible combinations of the major state of the sender and receiver, i.e.
the markings of places sender state and receiver state. The relationship between
the sender sequence number (ssn) and receiver sequence number (rsn), either
rsn = ssn or rsn = ssn ⊕MS 1, gives rise to subtypes for two of the four
combinations of major state. Thus there are six combinations in total, giving
the six types, 1, 2a, 2b, 3a, 3b and 4, shown in Table 1. An explanation of the
significance of each type is given in [11].
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Table 1. Classification of markings M ∈ V(MS,MR) into types based on the state of
the sender and receiver

M(sender state) M(receiver state) M(send seq no) M(recv seq no) TypeMS(M)
1‘s ready 1‘r ready 1‘sn 1‘sn 1
1‘wait ack 1‘r ready 1‘sn 1‘sn 2a
1‘wait ack 1‘r ready 1‘sn 1‘(sn ⊕MS 1) 2b
1‘wait ack 1‘process 1‘sn 1‘sn 3a
1‘wait ack 1‘process 1‘sn 1‘(sn ⊕MS 1) 3b
1‘s ready 1‘process 1‘sn 1‘sn 4

Definition 4 (Markings to Types). We define the family of functions that
classifies markings as TypeMS : V(MS,MR) → {1, 2a, 2b, 3a, 3b, 4} where the body
of TypeMS is given in Table 1.

In addition, the following assumptions are made about the content of the com-
munication channels, all of which are proved valid at the end of Section 4.1.

Assumption 1. The content of the message and acknowledgement channels is
a list of contiguous integers of the form i∗j∗ where i, j ∈ {0, ...,MaxSeqNo}.

Assumption 2. The message and acknowledgement channels contain at most
two distinct consecutive integers, i.e. of the form i∗j∗ where j = i ⊕MS 1.

Assumption 3. All reachable markings M ∈ V(MS,MR) of CPN(MS,MR) can
be classified into one of the 6 types in Table 1.

Using Lemma 1, Assumptions 1, 2 and 3, and Table 1, every marking can be
encoded and uniquely identified by the following marking notation:

Definition 5 (Shorthand Marking Notation). For CPN(MS,MR) all mark-
ings M ∈ V(MS,MR) can be uniquely identified and represented by the notation
M

(MS,MR)
(type,ssn),(mo,ao,mn,an,ret) where the superscript contains the parameter values

of the SWP CPN and the subscript contains the marking description, where:

– type = TypeMS(M);
– ssn ∈ {0, 1, ..., MS} is the sender sequence number;
– mo ∈ N is the number of old (duplicate) messages with sequence number

ssn &MS 1 in the message channel;
– ao ∈ N is the number of old (duplicate) acknowledgements with sequence

number ssn in the acknowledgement channel;
– mn ∈ N is the number of new (current) messages with sequence number ssn

in the message channel;
– an ∈ N is the number of new (current) acknowledgements with sequence

number ssn ⊕MS 1 in the acknowledgement channel; and
– ret ∈ {0, 1, ..., MR} is the value of the retransmission counter for the cur-

rently outstanding (unacknowledged) message;
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so that for a given M ∈ V(MS,MR) represented by M
(MS,MR)
(type,ssn),(mo,ao,mn,an,ret)

the marking of places sender state, receiver state, send seq no and recv seq no is
encoded in the pair (type, ssn) as given by Table 1 and:

M(mess channel) = 1‘[(ssn &MS 1)mo ssnmn]
M(ack channel) = 1‘[ssnao (ssn ⊕MS 1)an]
M(retrans counter) = 1‘ret

Analogously, a shorthand notation is defined for arcs in [11].
Sets of markings and sets of arcs are defined as follows:

Definition 6 (Sets of Markings). V
(MS,MR)
(type,ssn) ={M ∈ V(MS,MR) | TypeMS(M)

= type, M(send seq no) = 1‘ssn} represents the set of markings in which the
sender sequence number is given by ssn, and the sender and receiver states and
receiver sequence number are given by the type as specified in Table 1.

Definition 7 (Sets of Arcs). A
(MS,MR)
(type,ssn) = {(M, (t, b), M ′) ∈ A(MS,MR) |

TypeMS(M) = type, M(send seq no) = 1‘ssn} represents the set of arcs with
source nodes in V

(MS,MR)
(type,ssn) .

3.2 Important Model Properties

There are several important behavioural properties of the SWP CPN model that
are needed for the proof of correctness of the algebraic expressions:

Lemma 2. For all M ∈ V(MS,MR), the enabling and subsequent firing of each
transition is independent of the values of the sequence numbers in the binding.

Sketch of Proof. (See [11] for the full proof.) Proof is from Lemma 1 and the
standard enabling and firing rules of CPNs [14].

From Fig. 1 the enabling conditions of send mess are: fc(M(sender state)) =
s ready; |M(send seq no)| > 0; and |M(mess channel)| > 0. All three conditions
are independent of sequence numbers. send mess is enabled with binding queue =
fc(M(mess channel)) and sn = fc(M(send seq no)). When send mess occurs, it:

– Removes 1‘s ready from sender state and returns 1‘wait ack to this place;
– Leaves the marking of place send seq no unchanged; and
– Removes 1‘queue from place mess channel and returns 1‘queue^̂ [sn] to this

place (append a copy of sn to the end of the message channel queue).

None of these actions depend on or are affected by the particular values of queue
or sn in the binding, thus the behaviour of send mess is independent of the values
of the sequence numbers with which it interacts. The same reasoning is used to
prove this lemma for the other seven transitions. ��
Lemma 3. For all M ∈ V(MS,MR) in which M(receiver state) = 1‘r ready and
|fc(M(mess channel))| > 0, the message at the head of the queue in the mes-
sage channel can always be converted into an acknowledgement, i.e. ∃M ′, M ′′ ∈
V(MS,MR) such that M [receive mess〉M ′[send ack〉M ′′, |fc(M ′′(mess channel))| =
|fc(M(mess channel))|−1 and |fc(M ′′(ack channel))| = |fc(M(ack channel))|+1.
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Sketch of Proof. (See [11] for the full proof.) Only reachable markings satisfy-
ing the enabling conditions of receive mess need be considered. For each such
marking M , Lemma 2 ensures that the enabling and action taken upon firing re-
ceive mess is independent of the values of the sequence numbers involved. When
receive mess occurs from any such M we reach a marking M ′ in which the re-
ceiver state has changed to process and one message has been removed from
the message channel. From the CPN diagram in Fig. 1, each such marking M ′

enables send ack, the occurrence of which leads to a marking M ′′ such that the
receiver has returned once again to the ready state, the message channel con-
tains one less message than in M and the acknowledgement channel contains
one more acknowledgement than in M . Thus the lemma is proved. ��

Lemma 4. ∀M ∈ V(MS,MR), |fc(M(mess channel))| > 0 =⇒ ∃M1 ∈ V(MS,MR)
such that M [mess loss〉M1 and |fc(M1(mess channel))|= |fc(M(mess channel))|−
1 and |fc(M(ack channel))| > 0 =⇒ ∃M2 ∈ V(MS,MR) such that M [ack loss〉M2
and |fc(M2(ack channel))| = |fc(M(ack channel))| − 1, while the marking of all
other places remains unchanged.

Proof. The proof follows immediately from the CPN in Fig. 1. ��

4 Algebraic Expressions for the SWP CPN RGs

Empirical evidence gathered in [12] for small parameter values reveals a regular
structure in the RG that is linear in MaxSeqNo and quartic in MaxRetrans. This
also holds true for the model presented in Section 2. Based on the intuition
in [12] for the case where MaxRetrans=0, in this paper, we present an algebraic
formula representing the family of RGs of our SWP CPN and prove it correct.
We then discuss a number of properties that can be proved directly from the
algebraic formula. Because of size limitations, only proof sketches are presented
(see [11] for details).

4.1 The Algebraic Formula in Both Parameters

When defining the markings and arcs of OG(MS,MR) we specify sets of markings
and arcs using the notation from Definitions 5, 6 and 7 and by specifying allow-
able ranges of the five variables (mo, ao, mn, an, ret). All variables are assumed
to be greater than or equal to 0, unless otherwise indicated.

All of the markings of OG(MS,MR) are described in this way in Table 2, by
evaluating the expressions in this table for 0 ≤ i ≤ MS. The first column gives
the name of the set of markings for each subset of the partition according to
its type. Column 2 defines the set of markings by specifying the allowed ranges
of variable values. If a variable is restricted to a specific value, e.g. 0, we write
this directly in the label of the marking. Note that because of the expression
0 ≤ mo + ao ≤ MR − 1, the markings of type 3a and type 4 (rows 4 and 6) are
defined only when MR > 0. Hence V

(MS,0)
(3a,i) = V

(MS,0)
(4,i) = ∅, the empty set, when

MR = 0.
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Table 2. V
(MS,MR)
(type,i) , for 0 ≤ i ≤ MS and type ∈ {1, 2a, 2b, 3a, 3b, 4}

Name Set Definition

V
(MS,MR)
(1,i) {M

(MS,MR)
(1,i),(mo,ao,0,0,0) | 0 ≤ mo + ao ≤ MR}

V
(MS,MR)
(2a,i) {M

(MS,MR)
(2a,i),(mo,ao,mn,0,ret) | 0 ≤ mo + ao ≤ MR, 0 ≤ ret ≤ MR,

0 ≤ mn ≤ ret + 1}
V

(MS,MR)
(2b,i) {M

(MS,MR)
(2b,i),(0,ao,mn,an,ret) | 0 ≤ ao ≤ MR, 0 ≤ ret ≤ MR, 0 ≤ mn ≤ ret,

0 ≤ mn + an ≤ ret + 1}
V

(MS,MR)
(3a,i) {}, for MR = 0; or

{M
(MS,MR)
(3a,i),(mo,ao,mn,0,ret) | 0 ≤ mo + ao ≤ MR − 1, 0 ≤ ret ≤ MR,

0 ≤ mn ≤ ret + 1}, for MR > 0.
V

(MS,MR)
(3b,i) {M

(MS,MR)
(3b,i),(0,ao,mn,an,ret)| 0 ≤ ao ≤ MR, 0 ≤ ret ≤ MR, 0 ≤ mn + an ≤ ret}

V
(MS,MR)
(4,i) {}, for MR = 0; or

{M
(MS,MR)
(4,i),(mo,ao,0,0,0) | 0 ≤ mo + ao ≤ MR − 1}, for MR > 0.

All of the arcs of OG(MS,MR) are described in Tables 3 to 8 by evaluating
each table for 0 ≤ i ≤ MS. There is one table of arcs per set of markings (i.e.
per row) in Table 2, describing the set of outgoing arcs of that set of markings.
Correspondingly, A

(MS,0)
(3a,i) and A

(MS,0)
(4,i) = ∅ when MR = 0. The first column of

each arc table gives any additional restrictions that must be placed on the vari-
ables mo, ao, mn, an and ret. For example, loss of an old message cannot occur
when mo = 0. The second, third and fourth columns list the source marking,
binding element and destination marking respectively.

We now state the theorem for our parametric RG over both parameters and
prove its correctness.

Theorem 1. For all MS ∈ N+, MR ∈ N and for Type = {1, 2a, 2b, 3a, 3b, 4},
OG(MS,MR)=(V(MS,MR), A(MS,MR)) where

V(MS,MR) =
⋃

0≤i≤MS

t∈Type

V
(MS,MR)
(t,i)

and
A(MS,MR) =

⋃
0≤i≤MS

t∈Type

A
(MS,MR)
(t,i)

where all nodes and arcs are defined in Tables 2 to 8.

Proof. The proof is in two parts. The first part proves that all states in V(MS,MR)
are reachable from the initial marking using a connected spanning graph. The
second part proves that every arc from every state in V(MS,MR) leads to a state
in V(MS,MR) and that this set of arcs equals A(MS,MR). The two parts of the
proof each describe a necessary condition, which together are sufficient to show
that Theorem 1 is correct.
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Lemma 5. Spanning Lemma. For MR ∈ N and MS ∈ N+, and for 0 ≤ i ≤
MS, and for Type = {1, 2a, 2b, 3a, 3b, 4}, all markings in ∪t∈Type(V

(MS,MR)
(t,i) ) ∪

{M (MS,MR)
(1,i⊕MS1),(MR,0,0,0,0)} are reachable from M

(MS,MR)
(1,i),(MR,0,0,0,0).

Sketch of Proof. (See [11] for the full proof.) Lemma 2 allows this lemma to be
proved directly, for any value of i ∈ {0, ..., MS}, rather than inductively over
MS. The marking M

(MS,MR)
(1,i),(MR,0,0,0,0), identical to the initial marking but for

MR old duplicate messages with sequence number MS in the message channel,
is chosen as the starting point, rather than the initial marking M

(MS,MR)
(1,i),(0,0,0,0,0).

This is because, as it turns out, it is easier to show that M
(MS,MR)
(1,i),(MR,0,0,0,0) can

reach all markings in V
(MS,MR)
(1,i) . (Had we started with the initial marking, we

would need to complete a full cycle of the sequence number space in order to get
old messages in the message channel when ssn = 0.)

Application of Lemma 3 MR number of times shows that M
(MS,MR)
(1,i),(MR,0,0,0,0)

can reach all markings in Vspan1 = {M (MS,MR)
(1,i),(mo,MR−mo,0,0,0) | 0 ≤ mo ≤ MR}.

Then by application of Lemma 4, Vspan1 can reach the markings in

Vspan2 = {M (MS,MR)
(1,i),(mo′,ao,0,0,0) | M

(MS,MR)
(1,i),(mo,MR−mo,0,0,0) ∈ Vspan1,

0 ≤ mo′ ≤ mo, 0 ≤ ao ≤ MR − mo}

By a process of simplification of the inequalities in the set definition, we deter-
mine that Vspan2 equals V

(MS,MR)
(1,i) (see Table 2).

From inspection of the CPN diagram in Fig. 1, M
(MS,MR)
(1,i),(MR,0,0,0,0) ∈ V

(MS,MR)
(1,i)

can reach M
(MS,MR)
(2a,i),(MR,0,1,0,0) via occurrence of send mess, regardless of the value

of i. A similar process is then followed for marking M
(MS,MR)
(2a,i),(MR,0,1,0,0) as was fol-

lowed for M
(MS,MR)
(1,i),(MR,0,0,0,0), to prove that M

(MS,MR)
(2a,i),(MR,0,1,0,0) can reach all other

markings in V
(MS,MR)
(2a,i) . This process continues for the markings in V

(MS,MR)
(2b,i) ,

V
(MS,MR)
(3a,i) , V

(MS,MR)
(3b,i) and V

(MS,MR)
(4,i) , and for reachability from one set to an-

other. The procedure for determining a spanning of markings in V
(MS,MR)
(type,i) for

type ∈ {2a, 2b, 3a, 3b} is slightly more complicated, due to the fact that retrans-
missions can occur from these markings when ret < MR.

Finally, M
(MS,MR)
(1,i⊕MS1),(MR,0,0,0,0) can be reached from M

(MS,MR)
(2b,i),(0,0,MR,1,MR) ∈

V
(MS,MR)
(2b,i) by firing the receive ack transition. (The MR new messages become

MR old messages because ssn has incremented.) Thus the lemma is proved. ��

Corollary 1. All markings in V(MS,MR) are reachable from M
(MS,MR)
(1,0),(MR,0,0,0,0).

This follows directly from the Spanning Lemma by a trivial induction over MS.

To complete the final step in the proof that all markings in V(MS,MR) are ac-
cessible from the initial marking, it is sufficient to show that the initial marking
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M
(MS,MR)
(1,0),(0,0,0,0,0) can reach one of the markings in {M (MS,MR)

(1,i),(MR,0,0,0,0) | 0 ≤ i ≤
MS}. By repeated application of Lemma 5 this can reach M

(MS,MR)
(1,0),(MR,0,0,0,0),

which in turn, by Corollary 1, can reach all markings in V(MS,MR). The marking
M

(MS,MR)
(1,1),(MR,0,0,0,0) is chosen as it is the first suitable marking that can be reached

from the initial marking. This is proved in the following lemma.

Lemma 6. M
(MS,MR)
(1,1),(MR,0,0,0,0) is reachable from M

(MS,MR)
(1,0),(0,0,0,0,0).

Sketch of Proof. (See [11] for the full proof.) Proof is by direct inspection of the
CPN diagram in Fig. 1. The initial marking enables transition send mess with
binding <queue = [], sn = 0>. This results in the marking M

(MS,MR)
(2a,0),(0,0,1,0,0).

From this marking, transition timeout retrans can occur consecutively MR num-
ber of times. The resulting marking is M

(MS,MR)
(2a,0),(0,0,MR+1,0,MR) in which MR + 1

copies of the message with sequence number 0 are in the message channel. From
this marking, receive mess can occur, leading to marking M

(MS,MR)
(3b,0),(0,0,MR,0,MR).

From this marking, send ack can occur, leading to M
(MS,MR)
(2b,0),(0,0,MR,1,MR). The sin-

gle acknowledgement with sequence number 1 is the acknowledgement for which
the sender is waiting. The occurrence of receive ack with binding <queue =
[], sn = 0, rn = 1, rc = MR> results in marking M

(MS,MR)
(1,1),(MR,0,0,0,0). (Again,

the new messages are now old messages because ssn has incremented.) Thus
M

(MS,MR)
(1,0),(0,0,0,0,0) can reach M

(MS,MR)
(1,1),(MR,0,0,0,0) and the lemma is proved. ��

From Corollary 1 and Lemma 6, all markings in V(MS,MR) are reachable from
M

(MS,MR)
(1,0),(0,0,0,0,0) and Part A of the proof of Theorem 1 is proved.
Part B of the proof of Theorem 1 is proved by the Successor Lemma:

Lemma 7. Successor Lemma. For all MR ∈ N, MS ∈ N+, i ∈ {0, ..., MS}
and t ∈ {1, 2a, 2b, 3a, 3b, 4}, A

(MS,MR)
(t,i) describes exactly the enabled binding ele-

ments of all markings in V
(MS,MR)
(t,i) and the destination marking of every arc in

A
(MS,MR)
(t,i) is in V(MS,MR).

Sketch of Proof. (See [11] for a full proof.) Lemma 2 allows this lemma to be
proved correct for any value of i ∈ {0, ..., MS}. Consider the markings in
V

(MS,MR)
(1,i) defined in row 1 of Table 2. From the CPN diagram in Fig. 1 and

standard enabling rules of CPNs [14], all enabled binding elements (and thus
associated arcs) can be identified. The send mess transition is enabled by all
markings in V

(MS,MR)
(1,i) . The mess loss and receive mess transitions are enabled

only by markings in the subset of V
(MS,MR)
(1,i) in which the message channel is

non-empty. The ack loss and receive dup ack transitions are enabled only by the
subset of V

(MS,MR)
(1,i) in which the acknowledgement channel is non-empty. No

other transitions are enabled by any markings in V
(MS,MR)
(1,i) .
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By systematically determining the destination marking for each pair of source
marking and binding element, all arcs with source nodes in V

(MS,MR)
(1,i) can be

determined. For example, the occurrence of transition send mess from marking
M

(MS,MR)
(1,i),(mo,ao,0,0,0) ∈ V

(MS,MR)
(1,i) with binding < queue = [(i&MS 1)mo], sn = 1 >

leads to a marking M
(MS,MR)
(2a,i),(mo,ao,1,0,0) ∈ V

(MS,MR)
(2a,i) , for all i ∈ {0, ..., MS}. This

corresponds to row 1 of Table 3. Rows 2 to 5 can be obtained by a similar
procedure for the other enabled transitions.

This procedure can then be repeated for all markings in the other five sets
of nodes defined in Table 2. This shows that all arcs with source markings in
V(MS,MR) also have destination markings in V(MS,MR) and that these arcs cor-
respond exactly to those defined in Tables 3 to 8. Thus the lemma is proved. ��

For all MS ∈ N+ and all MR ∈ N, Lemmas 5, 6 and 7 and Corollary 1
show that the markings in V(MS,MR) defined by Table 2 correspond exactly to
the markings reachable from the initial marking. Lemma 7 also shows that the
arcs captured by Tables 3 to 8 correspond exactly to the set of arcs with source
markings in V(MS,MR). Thus, for all MS ∈ N+ and all MR ∈ N, OG(MS,MR) =
(V(MS,MR), A(MS,MR)) and hence Theorem 1 is proved. ��

The validity of the three assumptions made in Section 3.1 is confirmed by the
correctness of the algebraic expressions. No marking can be reached that violates
any of the three assumptions, i.e. every marking has channel content of the form
i∗j∗ where i, j ∈ {0, ..., MS} and j = i⊕MS 1, and every reachable marking can
be classified into one of the 6 types in Table 1.

4.2 Analysis Results

Absence of Unexpected Deadlocks. Dead markings can be detected by sub-
tracting from the corresponding set of markings in Table 2 the sets of markings
defined as source markings in each table of arcs.

For all MR ∈ N and MS ∈ N+, the dead markings are V
(MS,MR)
dead =

∪0≤i≤MS{M (MS,MR)
(2a,i),(0,0,0,0,MR), M

(MS,MR)
(2b,i),(0,0,0,0,MR)}. All dead markings occur be-

cause of loss and a bounded retransmission scheme, and all are expected.

Channel Bounds. Channel bounds can be determined by direct examination
of the set definitions in the rows of Table 2. Maximising mo + mn gives the
message channel bound for the markings in each row. The message channel
bound of the SWP becomes the maximum of mo + mn taken over all 6 rows.
Similarly, the acknowledgement channel bound is found by maximising ao +
an. The bound for both channels is 2MR + 1, from row 2 (message channel)
and row 3 (acknowledgement channel). These bounds are imposed by the SWP
itself.

Size of the Reachability Graph. By direct inspection of Table 2 and Tables 3
to 8, Theorem 2 for the size of the RG in both parameters can be proved.
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Theorem 2. For MR ∈ N and MS ∈ N+, the number of nodes and arcs in
OG(MS,MR) is given by

|V(MS,MR)| = ((MS + 1)/6)(5MR4 + 38MR3 + 97MR2 + 100MR + 36)

and

|A(MS,MR)| = ((MS + 1)/6)(30MR4 + 175MR3 + 306MR2 + 179MR + 36).

Sketch of Proof. The nodes in V
(MS,MR)
(1,i) and V

(MS,MR)
(4,i) actually form a trian-

gular structure, where the base contains the nodes where mo + ao = MR and
the apex is the node where mo = ao = 0. Using the formula for the nth triangu-
lar number, n(n + 1)/2, for n = MR and n = MR − 1 respectively, we obtain
|V (MS,MR)

(1,i) | = (MR2 +3MR+2)/2 and |V (MS,MR)
(4,i) | = (MR2 +MR)/2, for each

value of i ∈ {0, ..., MS}.
The nodes in the other four sets have a more complicated structure. Take

V
(MS,MR)
(2a,i) for example. The structure can be visualised as a succession of tri-

angular structures over mo and ao, one for each value of mn ∈ {0, ..., ret}. A
summation over 0 ≤ ret ≤ MR obtains |V (MS,MR)

(2a,i) | = (MR4+8MR3+21MR2+
22MR + 8)/4. Similar techniques are used to obtain the size of the other node
sets. The total number of markings is given by a summation over all values of
i ∈ {0, ..., MS} and the result V(MS,MR) = (MS+1)(5MR4+38MR3+97MR2+
100MR + 36)/6 is obtained.

Determining the number of arcs requires a more complicated approach. The
number of source markings for which each arc is defined is determined for each
row in Tables 3 to 8. To do this in a way that prevents excessively copious sum-
mations, for each row, the number of markings that do not satisfy the conditions
in column 1 of each arc table is determined. This is then subtracted from the
total number of markings defined by the corresponding set in Table 2. The to-
tal number of arcs is then the summation over all rows in all arc tables of the
number of arcs defined by each row. The result is as stated in the theorem. ��

This theorem confirms our empirical results for small parameter values and
matches RG size expressions obtained using methods to fit polynomials to data.

5 Conclusions and Future Work

We have proved a theorem which gives an algebraic expression for the infinite
family of RGs of a parameterised CPN model of the class of Stop-and-Wait pro-
tocols. The parameters, MaxSeqNo and MaxRetrans, are both unbounded and
the protocol operates over a lossy unbounded in-order medium. This is a consid-
erable advance over previous work [12], which was restricted to the case where
MaxRetrans = 0, and automatic verification attempts using the tool FAST [9]
which were only successful when MaxRetrans was an unbounded parameter with
MaxSeqNo restricted to small concrete values (1 to 5) [8], and when MaxSeqNo
was an unbounded parameter with MaxRetrans fixed to 0 [7].
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These symbolic expressions can be used for protocol verification. For example,
we have shown how deadlocked states can be identified from the arc expressions
as those markings that never appear as source nodes. Further, we have shown
that the node table (Table 2) can be used to determine upper bounds on the
channel capacity. This result (2MaxRetrans+1) confirms that previously obtained
using a hand proof on the CPN in [5,6], but is much simpler (once the algebraic
expressions are known). We have also derived formulae for the number of nodes
and arcs in the state space as a function of the two parameters, proving they
are linear in MaxSeqNo and quartic in MaxRetrans, an interesting complexity
result. Proving language equivalence to a service of alternating send and receive
events [6], as was done in [12] for the restricted case of MaxRetrans = 0, is
currently being undertaken for the general case.

In the future, we would like to automate the procedure for obtaining algebraic
expressions for the RGs of parametric systems based on finding structural reg-
ularities as a function of the parameters. Our experience with modelling other
systems, including the Capability Exchange Signalling service [18] and TCP’s
data transfer service [13], also reveals repeating patterns in their RGs from
which symbolic RGs representing the infinite family have been obtained. This
provides evidence that our new parametric approach is promising and may be
generalised to a larger class of systems.
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Abstract. This paper presents a case study on how to apply formal
modeling and verification in the context of quality improvement in med-
ical healthcare. The aim is to verify quality requirements of medical
guidelines and clinical treatment protocols that are used to standardize
patient care both for general practitioners and hospitals. This research
is supported by the European Commission’s IST program and brings to-
gether experts from computer science, artificial intelligence in medicine,
hospitals, and the Dutch Institute for Healthcare Improvement (CBO).
We present the process of formal modeling and verification of guide-
lines using the modeling language Asbru, temporal logic for expressing
the quality requirements, and model checking for proof and error de-
tection. The approach is illustrated with a case study on a guideline
from the American Association for Pediatrics on “Jaundice in healthy
Newborns”1.

Keywords: Model checking, verification, formal methods, Asbru,
abstraction, medical guidelines.

1 Introduction

Over the last decade, the approach of evidence-based medicine has increased the
application of clinical guidelines in medical practice. Medical guidelines provide
clinicians with healthcare recommendations based on valid and up-to-date em-
pirical evidence. Usually they consist of “systematically developed statements to
assist hospital staff with appropriate healthcare decisions” [12]. Application of
guidelines improves the quality of medical treatment and it has been proven that
adherence to guidelines and protocols may reduce healthcare costs up to 25%.

Many practical guidelines and protocols still contain ambiguous, incomplete or
even inconsistent elements. Recent efforts have tried to address quality improve-
ment of guidelines [21]. Our general approach to verification of guidelines is based
1 This work has been partially supported by the European Commission’s IST program,

under contract number IST-FP6-508794 Protocure II.
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Fig. 1. Formalization and verification of protocols in the Protocure project

on the observation that guidelines can be viewed as parallel programs. Therefore
the classical formalmethods for the quality assurance of software can be applied for
the case of medical guidelines, especially because guidelines are highly-structured,
systematic documents that are amenable for formal verification.

Because most parts of a guideline consist of informal plain text an appropri-
ate representation language with clear and well-defined semantics is required. For
this purpose we use Asbru[19]. Asbru is a temporal, skeletal plan-representation
language which was especially designed for the medical domain. The most impor-
tant advantage of using Asbru as a modelling language is its formal semantics[3].
Figure 1 shows the flow of documents in the overall verification process. The orig-
inal guideline is depicted in the upper left corner of Fig. 1. It is modeled as Asbru
plan using the knowledge-representation language Asbru.

The Asbru model is the basis for further tasks, e.g. to build decision sup-
port systems. For these tasks it is necessary to ensure the quality of the model.
Thus, we are interested in tools to efficiently debug the model, e.g. to ensure
its consistency. [10] defines a number of structural properties which should be
fulfilled by a good quality Asbru model. Some of these properties can be checked
by syntactic analysis. Other properties require formal analysis. Furthermore, we
are interested in the formal verification of more complex medical properties such
as medical indicators. Complex, infinite state properties in general require inter-
active theorem proving. For structural and simple medical properties we aim for
efficient techniques which can be automatically applied. For this, we automati-
cally translate the model into a formal representation for an interactive theorem
prover KIV[2]. In order to apply model checking, we further translate the model
into the input language of SMV model checker[18]. In this paper, we focus on
model checking of properties.

Simultaneously to the above transformation, in Figure 1, a number of inter-
esting properties have been identified while analyzing both the original protocol
and its Asbru model. We distinguish between Medical Properties and Structural
Properties (see 3.2).
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To evaluate our approach we have considered the medical guideline for “Jaun-
dice in healthy newborns”, a medical guideline from the American Association
of Pediatrics, that covers various features of Asbru. We will use the jaundice
protocol in the following sections as running example for our paper.

The identified properties do not depend on timing constraints. Therefore, it
has been possible to abstract away from time which reduces the complexity of
the model. For the verification of these properties, we have chosen SMV as a
model checker, because to our knowledge this is one of the most efficient tools to
verify large models without complex timing constraints. For real-time properties,
the use of timed model checkers, e.g. UPPAAL[22], will be of interest.

We have used Cadence SMV version 10-11-02 with default settings on a
computer with a 3 GHz Pentium processor and 2 GB of RAM.

Our main contributions are: (i) a validated formal model of a concrete medical
guideline where the quality has been assured by automatic techniques, (ii) tool
support for automatic verification of all of the properties from [10], (iii) case
study to assess the possibilities of light-weight model checking techniques to
verify structural or simple medical properties of medical guidelines; this case
study could serve as a reference case study for other model checkers and other
automatic techniques in the field of medical guidelines. We do not present new
strategies for model checking SMV models in general.

The paper is organized as follows. Section 2 gives a short overview of the
Jaundice guideline and the Asbru language with its formal semantics. Section
3 gives a description of a concrete infinite state model of the jaundice protocol
and describes its reduction to a finite state model using an abstraction. In sec-
tion 4 we summarize our experiences from this case study and describe possible
improvements of the current process planned for future work.

2 Asbru: A Knowledge Representation Language for
Protocols

We describe Asbru and its use by a simple example. Details on Asbru can be
found in [19].

2.1 The Jaundice Protocol

Jaundice, or hyperbilirubinemia, is a common disease in newborns which is
caused by increased bilirubin levels in blood. Under certain circumstances, high
bilirubin levels may have destructive neurological effects and thus must be ac-
curately treated. Often jaundice disappears without treatment, but sometimes
a phototherapy is needed to reduce the level of total serum bilirubin(TSB). In a
few cases, however, jaundice is a sign of a severe disease, which must be treated
appropriately.

The jaundice reference guideline[1] is a 10 pages document which contains
various notations: the main text; a list of factors to be considered when assessing
a jaundiced newborn; two tables - one for the management of the healthy term
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newborns and another for the treatment options for jaundiced breast-fed ones;
and a flowchart describing the steps in the protocol. The Protocol consists of two
parts performed sequentially: diagnosis and treatment. Treatment is performed
if disease symptoms are detected. During the application of the protocol, as soon
as the possibility of a more serious disease is uncovered, the recommendation is
to exit without any further action. The further treatment is not considered in
the guideline.

2.2 Modeling the Jaundice Protocol in Asbru

Medical guidelines are represented as hierarchical skeletal plans, i.e. plans with
subplans. Figure 2 shows the hierarchy of plans representing the Asbru model of
jaundice protocol. It is made up of about 40 plans. Two phases in the protocol
control flow clearly emerge: diagnostics and treatment parts which are executed
sequentially. Three “Check-for-...” plans model two check-ups at specific time
intervals and a continuous monitoring of the TSB level. We focus here on the
treatment phase, which is more interesting from the verification point of view.
It consists of two parallel plans, namely the actual treatment and a cyclical
plan asking for the input of new TSB and age values every 12 to 24 hours.
Depending on the current bilirubin level, either the regular-treatments or an
exchange-transfusion can take place. The plan-body of regular-treatments plan
contains two subplans which are executed in parallel without any ordering. The
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regular-treatments* subplan (which is abbreviated with * in Figure 2) represents
a group of therapies, which are executed sequentially without any order. All of
the therapy plans are optional with the exception of the observation plan which
must complete for the successful completion of the parent plan. Any of these
therapies can be restarted, in case if it is eventually aborted.

Figure 3 shows an example of two Asbru plans from the jaundice guideline. An
Asbru model of a plan contains the definitions of different descriptive elements
like intentions, conditions, plan body and control structures. In the following we
describe these main elements.

The intentions are the high-level goals of a plan. Intentions can be ex-
pressed in terms of achieving, maintaining or avoiding certain states or actions.
The states or actions to which intentions refer can be intermediate or final.

plan regular-treatments
intentions ...
conditions ...
plan-body type=unordered, wait-for all

feeding-alternatives
/* implicit subplan regular-treatments*: */
do type=any-order, retry-aborted-subplans=yes, wait-for observation

phototherapy-intensive
photottherapy-normal-prescription
photottherapy-normal-recommendation
observation

plan phototherapy-intensive
intentions

achieve-overall-state: (bilirubin=observation)
maintain-intermediate-state:

(and(TSB-decrease=yes in [[4h,-],[-,6h],[-,-]] SELF)
(TSB-change>1 in [[4h,-],[-,6h],[-,-]] SELF))

conditions
setup-condition: (or(bilirubin=phototherapy-intensive in NOW)

(normal-phototherapy-failure))
abort-condition: (or(and(bilirubin!=phototherapy-intensive)

(not normal-phototherapy-failure))
(intensive-phototherapy-failure))

intensive-phototherapy-failure:
(and(bilirubin=phototherapy-intensive in NOW)

(or(and(TSB-decrease=yes in [[4h,-],[-,6h],[-,-]] SELF)
(TSB-change<1 in [[4h,-],[-,6h],[-,-]] SELF))

(TSB-decrease=no in [[4h,-],[-,6h],[-,-]] SELF)))
plan-body

prescribe-intensive-phototherapy

Fig. 3. Regular-treatments and Phototherapy-intensive plans
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Thus, the intention label “maintain-intermediate-state” means that always dur-
ing the execution of the plan a certain condition must be satisfied. Generally
there are twelve possible forms of intention: [achieve/maintain/avoid] [interme-
diate/overall] [state/action]. Most of the medical properties we considered in
the verification are gained from the intentions (see Sec. 3.2). For example, one
of the intentions of the phototherapy-intensive plan (see Fig. 3) is to maintain a
certain intermediate state, i.e. in all cases in 4 to 6 hours after the activation of
the plan the bilirubin level decreases. As all intentions of the jaundice guideline
this is an universal property.

Every plan-body contains the actions to be performed by the plan and/or
subplans to be executed as part of the plan. A wide variety of control structures
can be used to specify the execution order of the actions in the plan-body. There
are the following types of plan-bodies in Asbru:

– user-performed: an action to be performed by the user, which requires user
interaction and thus is not modeled further

– single step: an action which can be either an activation of a subplan, an
assignment of a variable, or request for an input value

– subplans: a set of steps to be performed in a given order. The possible
execution orders are: sequential, parallel, in any possible sequential or-
der(anyorder) and in parallel without any restrictions on the synchroniza-
tion (unordered)

– cyclical plan: a repetition of actions over time periods

When a plan-body contains subplans it is possible to define the completion of
some (or all) subplans as a necessary precondition for the successful completion
of the parent plan. For example wait-for-all type of the plan-body means, that
the successful completion of parent plan requires successful completion of all of
its subplans. Similarly wait-for-one or wait-for someplan can be defined.

The regular-treatments plan (Fig. 3) is a good example for a more compli-
cated structure of the plan-body. It has an unordered plan-body with wait-for-all
option and two subplans: feedings-alternatives and regular-treatments*. The im-
plicit plan regular-treatments* consists of several different therapies executed in
any order (see Fig. 2 and Fig. 3). Its subplan phototherapy-intensive (Fig. 3),
for instance, describes one of the therapies. Its plan-body simply contains the
activation of the subplan prescribe-intensive-phototherapy.

A variety of conditions can be associated with a plan, which influence con-
trol of an execution of the plan. The most important types of conditions are the
following: filter-, setup-, activate-, abort-, and complete-condition. The meaning
of these conditions is described more closely in the section 2.3. Conditions can
not only specify a set of satisfying current states2 but also they can be mon-
itored over time, if they are formulated using time annotations, e.g. in 4 to 6
hours after the activation of plan the bilirubin level change decrease is greater
then 1.
2 An Asbru state is composed of the state of execution of all plans and the state of

the patient. Further we have the Asbru history which is defined as a mapping from
the Asbru clock to an Asbru state and allows to specify time annotated conditions.
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Time annotations can occur in conditions. They specify the time period
where a parameter condition used in the time annotation is monitored. A time
annotation is defined by the following eight entities: reference point (REF),
earliest starting shift (ESS), latest starting shift (LSS), earliest finishing shift
(EFS), latest finishing shift (LFS), minimum duration (MinDu), maximum du-
ration (MaxDu) and parameter proposition ParamProp. These components are
combined in the data structure:

(ParamProp in [[ESS,LSS], [EFS,LFS], [MinDu,MaxDu]] REF)

Reference points like NOW (current time) and SELF (time of activation of this
plan) are commonly used. Consequently a time annotation defines a set of time
intervals (also called set of possible occurrences). A time annotation is TRUE if
and only if there exist a time interval in the set of possible occurrences where
the condition ParamProp is evaluated to TRUE in all time points within this
interval.

As example consider the following time annotation from the phototherapy-
intensive plan:

(TSB-decrease = yes in [[4h,-], [-,6h], [-,-]] SELF)

This time annotation monitors the bilirubin level on the time interval between 4
to 6 hours after the plan start. It is evaluated to TRUE if there is a new bilirubin
measurement with a value smaller than the latest measured value before the plan
started. It has the following meaning: there exist time interval (or point as special
case of interval) with earliest starting at 4h after the plan activation and latest
finishing at 6h after activation where TSB-decrease=yes is true. The predicate
TSB-decrease=yes is evaluated to TRUE on the given interval if and only if for
all time point t0 on this interval the bilirubin value is smaller than bilirubin
value at the time of plan activation.

2.3 Formal Semantics of Asbru

We use the formal semantics of Asbru defined in [3]. The semantics follows
two goals: first it should document Asbru and be understandable for users; on
the other hand it should be formal enough. We use the example of regular-
treatments* plan to explain the semantics here.

The operational semantics of Asbru is defined using statecharts. It uses the
formal semantics of statecharts defined in [9]. Asbru plans are modeled as stat-
echarts which run in parallel and communicate via shared variables and signals.
Asbru conditions are monitored over time. The evaluated conditions trigger tran-
sitions of the statecharts. The evaluation of conditions depends on the data inputs
from the environment usually describing dynamics of patient. Shared variables like
patient parameters or state of other plans can also influence the evaluation of As-
bru conditions. For example the abort-condition of phototherapy-intensive plan
(see Fig. 3) triggers the abort of the plan as soon as it fails to reduce bilirubin level
in 4 to 6 hours after the plan activation.
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Fig. 4. Statecharts modeling regular-treatments* plan

The regular-treatments* plan is an implicit subplan of the regular-treatments
plan (see Fig. 2 and Fig. 3). The behavior of the regular-treatments* plan is de-
fined by the statechart in Figure 4. This statechart is divided into a Selection
phase and an Execution phase. Initial state of the plan is Inactive. An exter-
nal signal consider triggers the selection phase (transition SC). In the state
Considered the condition filter tp is checked. In case this condition is satisfied,
the plan changes to the state Possible and so on. In the state Activated the
subplans are executed. The execution of subplans is controlled by the regu-
lar treatments* Control statechart (Fig. 4), which models an anyorder control
of subplans. It is responsible for the generation of the consider-, activate- or
retry-signals, which control the execution of subplans. All subplans are selected
in parallel (transition c) and executed such that at most one subplan is active
at the same time (transitions i.a). If the activated plan terminates(transitions
i.T) another one can be activated. If several subplans reach state Selected si-
multaneously, one of them is activated nondeterministically. If parameter flag
“retry-aborted” is set, then the transition i.r initiates a restart.

The original infinite state model of the system is a composition of statecharts
running in parallel and reacting on environment inputs. Interaction with the
environment happens in micro- and macro-steps. One macro-step consists of
many micro-steps which describe reactions of the system on certain environment
input. When a system achieves a stable state the corresponding macro-step is
completed and in the first micro-step of the next macro-step new input from
the environment is read. This model corresponds to the assumption that the
system, which models the guideline, always reacts quick enough to changes of
the environment. It is also intuitively the proper modeling for medical plans,
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Asbru Plans 

statecharts

as

Patient
(Environment)

Bilirubin

Blood pressure

Fig. 5. Original infinite state model of medical guideline

i.e. control of plans does not take time to activate or cancel some plans. The
notion of time is defined using macro-steps. Time passes only at the begin of
every macro-step.

In Asbru we have no explicit model of the patient, i.e. we do not model
specific patient behavior. We assume that the patient has chaotic behavior, i.e.
parameter values blood pressure, bilirubin level in blood, etc., change arbitrarily
over time. This allows us to investigate whether the medical protocol reacts
adequately in all possible cases. Consequently the infinite state concrete model is
the composition of statecharts modeling medical plans, the environment and the
Asbru clock modeling current time, see Figure 5. This model resembles somehow
the model of parallel processes communicating using shared variables.

3 Model Checking Process

The crucial point in model checking and verification in general is computing an
optimal abstraction of the examined system. Much research has concentrated on
tackling the state explosion problem. A variety of abstraction techniques have
been developed, for example [15], [16], [4], [14] and [8]. The basis for these inves-
tigations is an important observation: there are various aspects of the concrete
model that have no impact on the checked property and can be abstracted in
such a way that the size of the model is drastically reduced, but the property
is still safely verified, i.e. the satisfaction of a property over an abstract model
implies satisfaction over the concrete model. Methods that derive an abstract
model directly from some high-level description of the system are needed.

3.1 Abstract Finite State Model

Generally, it is a hard task to construct a correct abstract finite state model
for the generic Asbru model completely automatically, since Asbru is a very
expressive language.

The infinite parameters describing the patient (or environment) can be ab-
stracted to finite state variables using data abstraction [4], [17]. The more prob-
lematic issue is time, which usually requires some kind of history variable. All
plans, in order to proceed, must know whether their setup-, filter-, abort- or
complete-condition is satisfied or not. Some of these conditions contain time
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annotations, as for example the abort-condition of phototherapy-intensive plan
does (see Fig. 3). In order to evaluate time annotated conditions an Asbru plan
must access its history.

Our goal is an abstraction which can be constructed automatically for the
given Asbru model. In order to construct a finite state model an appropriate
abstraction which eliminates time and history is needed. We use a simple ab-
straction that maps all time annotations to atomic propositions whose logi-
cal value is randomly assigned in every macro step. Those random inputs can
eventually generate behavior in the abstract model that is not present in the
concrete model. This abstraction preserves only ACTL3 properties, as it is an
over-approximation, which adds extra behavior to the abstract model. Never-
theless, this is not a problem for us, because most interesting properties we aim
to verify are intentions, which are ACTL properties.

The main weakness of this abstraction is the generation of false negatives
during the verification of properties. On the other hand the important advantage
is its automatic generation. By this abstraction we shift the complexity of time
and history to the environment. According to the statechart semantics inputs
from the environment happen in the first micro-step of every macro-step and
provide the required information about the patient needed for the controls of
plans, e.g. up-to-date value of blood pressure or information about change of the
bilirubin level in blood over the period of 6 hours after the start of the plan.

For the generation of the SMV model we translate the statecharts from the
Asbru semantics into an equivalent flat state transition system, which can be
directly encoded in the SMV input language. This part models the control flow
of the guideline. On the other hand, data flow and time is modeled using the
abstraction techniques described above.

3.2 Properties

The results from the verification of properties should help to improve the qual-
ity of medical guideline. Structural properties specify the general correctness
requirements, which must be satisfied by every Asbru protocol, regardless of
its content. For example, every plan should eventually terminate, every plan
must have a chance to execute or be able to complete. Our experiences from
the jaundice case study has shown that verification of structural properties
helps to discover errors produced during the translation of informal medical
guideline into the formal Asbru model. The following structural properties have
been considered: termination (Asbru plans should always terminate), every plan
can eventually be activated (completed), there are no redundant conditions (i.e.
every condition can eventually have influence on the control flow of plans) and
all wait states are eventually quitted. These properties have been formalized as
CTL formulas and are automatically generated for every Asbru plan as SMV
specifications. Most of them are originally not ACTL properties, but their veri-
fication can be indirectly accomplished by the verification of the corresponding
3 The logic ACTL is the set of all well-formed state formulas from CTL[11] containing

no existential operators (EX and EU).
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term_pti_plan: SPEC AG(!ptip_state = inactive ->
AF(ptip_state = completed |

ptip_state = rejected |
ptip_state = aborted))

satisf_abort_pti_plan: SPEC AG(!(ptip_state=activated &
ptip_abort_condition))

reach_activated_pti_plan: SPEC AG(!(ptip_state=activated))
wait_possible_pti_plan: SPEC AG(ptip_state = possible ->

AF(ptip_setup_condition |
ptip_is_terminated))

Fig. 6. SMV specification of structural properties for Phototherapy-intensive plan

ACTL properties, as described in Section 3.3. For example, the corresponding
ACTL properties (in SMV syntax) for the plan phototherapy intensive(pti) are
depicted in Figure 6. The property term pti plan formulates a termination
property, i.e. every plan that was previously selected always terminates in the
future. By the satisf abort pti plan property we try to verify whether the
abort-condition of the phototherapy-intensive plan is redundant or not. In case
we find a non-spurious counter-example for satisf abort pti plan we know
that abort-condition is not redundant, i.e. it has an influence on the plan execu-
tion. Similar properties can be formulated for all other Asbru conditions. Reacha-
bility of important states is tested by properties like reach activated pti plan.
The property wait possible pti plan tests whether wait state possible is even-
tually quitted.

In contrast to structural properties medical properties address high level as-
pects of medical protocols, such as relevant clinical parameters or general safety
requirements concerning actions of physicians or overall intentions of the guide-
line. As an example, when treating jaundice, it is required that 6 hours after
application of phototherapy the bilirubin level must drop significantly. In the
jaundice case study we considered only plan intentions as conceptual properties.
For instance, plan phototherapy-intensive has two intentions, which can be spec-
ified as ACTL properties, as Figure 7 shows. With the intermediate state in the
second property we mean only stable states, i.e. states in which the reaction of
the plan on the environment inputs is completed. Therefore, the variable tick

--achieve overall state: bilirubin = observation
SPEC AG(ptip_state = completed -> AF AG bilirubin = observation)

--maintain intermediate state: tsb_decrease = yes & tsb_change>=1
SPEC AG((ptip_state = activated & tick) ->

(pti_tsb_decrease_yes_signal &
!pti_tsb_change_less_one_signal))

Fig. 7. SMV specification of medical properties for Phototherapy-intensive plan
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is used to describe the activated state of the pti plan where it is stable, i.e. no
transitions of the corresponding statechart are activated.

3.3 Verification Process

The abstraction we use is described in 3.1. It allows us to generate the SMV
model fully automatically. On the other hand it can introduce unrealistic be-
havior, which has an impact on the verification process. Figure 8 illustrates the
general scheme of verification. Due to property preservation considerations we
examine only ACTL properties although it is also indirectly possible to verify
ECTL properties. The medical properties we considered are the intentions of the
plans, which are formulated as ACTL formulas.

CONCRETE

MODEL MODEL

ABSTRACTabstraction

MODEL
CHECKERANALYZE

YES

property holds
in concrete model

NO

verifyACTL property

property doesn’t hold
in concrete model

Error in guideline
found

REFINE
(false negative)

(counter−example)

Fig. 8. Verification scheme

IF ACTL property is proved to be false the corresponding counter exam-
ple is generated. In the next step we have to analyze this trace to find out
whether it is a real bug in the concrete model or just some unrealistic trace
added by the over-approximation. We also have to verify ECTL properties since
most implementation level (structural) properties are existential properties, e.g.
satisfiability of Asbru conditions or non-redundancy of plans. If, for instance, a
ECTL formula EFφ must be verified, we first verify the ACTL formula AG¬φ.
If it is true then original formula is false. On the other hand, if a counter ex-
ample is found then we analyze whether it is realistic one. If the found counter
example trace is realistic then the original formula is true and the generated
counter example is the trace that satisfies the original formula.

3.4 Results and Experiences from Verification of Jaundice

The abstracted model of the jaundice guideline was constructed in the SMV
language and model checking was used to verify different properties. In partic-
ular we verified structural and medical properties of approximately 30 Asbru
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intention is not achieved

4h 6h
Time

phototherapy−normal

is not triggered
abort condition

bilirubin level

SELF

phototherapy−intensive plan start

Fig. 9. Counter example visualization

plans from the jaundice hierarchy of plans. Automatic generation of the SMV
model consisting of 3000 lines of code and including 360 structural and 40 med-
ical properties has accelerated the whole process. Checking one property takes
about 2 minutes on average whereby 2x106 BDD-nodes were allocated. Complete
verification of circa 400 properties lasted 3.5 hours and 4x106 BDD-nodes were
allocated.

In the whole verification process the manual effort of analyzing the counter
examples and refining the abstract model was rather small and acceptable. The
verification of structural properties uncovered several nontrivial modelling errors
and therefore helped immensely to gain more confidence in the formal Asbru
model.

During the process of formalization and verification of the medical proper-
ties, a number of errors and ambiguities were discovered. We have found special
cases of treatment that violate plan intentions. These special cases have been
overlooked by the Asbru modelers and were consequently not appropriately con-
sidered in the Asbru model. Figure 9 illustrates a possible execution sequence
that violates the intention of the phototherapy-intensive plan, see Figure 3. The
intention postulates that in 4 to 6 hours after plan start the bilirubin level must
decrease in the other case plan must abort. As we see in Figure 9 bilirubin level
does not decrease in the corresponding time interval and the plan does not abort.
The reason for the violation of the plan intention is that the abort-condition was
two weak and did not consider all possible cases. Using model checking verifi-
cation method we have discovered many other similar “forgotten” cases in the
overall plan hierarchy containing 30 plans.

4 Summary and Outlook

In this paper we have described the automated verification of medical guidelines
using the jaundice case study as an example. The simple abstraction we applied
yielded surprisingly good results in the jaundice case study. In fact only few
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refinements and fine tuning were needed while verifying properties. This simple
abstraction allows us to construct the SMV model fully automatically, which
is an important advantage as we plan to apply this method on further case
studies. The approach as a whole is not completely automatic but partly an
interactive one (see Fig. 8) because our abstraction is over-approximation. Due
to the high expressiveness of the Asbru modeling language it is practically not
possible to construct a correct abstraction for the general case of an Asbru-
model automatically without any user interaction. Nonetheless the degree of
automation of this process is very high.

The first errors we have found were consequence of too coarse abstraction.
In some cases our first verification experiments have shown that the used ab-
straction is too coarse. Therefore, to avoid the interactive component ANALYZE
in the process, see Figure 8, we plan to construct the correct abstraction. We
see this as promising direction for further work on verification of Asbru. Fur-
ther we plan to use the KIV theorem prover to show the correctness of the
constructed abstraction by proving the corresponding bisimulation equivalence.
Another profitable improvement can be a visualization of model checking re-
sults. The graphical interpretation of counter examples can make verification
more efficient as it makes the interpretation of traces easier.

Our approach to verify simple properties of medical guidelines by model
checking were surprisingly successful. Therefore, it is promising to also apply
other automatic techniques to the verification of more complex properties, e.g.
real-time properties, and larger guidelines.

Currently, we are applying our method on a second guideline, which describes
the treatment of breast cancer. This guideline is considerably larger but our first
experiences with it are very promising.
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Abstract. This paper discusses our initial experience with introduc-
ing automated assume-guarantee verification based on learning in the
SPIN tool. We believe that compositional verification techniques such
as assume-guarantee reasoning could complement the state-reduction
techniques that SPIN already supports, thus increasing the size of sys-
tems that SPIN can handle. We present a “light-weight” approach to
evaluating the benefits of learning-based assume-guarantee reasoning in
the context of SPIN: we turn our previous implementation of learning
into a main program that externally invokes SPIN to provide the model
checking-related answers. Despite its performance overheads (which man-
date a future implementation within SPIN itself), this approach provides
accurate information about the savings in memory. We have experi-
mented with several versions of learning-based assume guarantee reason-
ing, including a novel heuristic introduced here for generating component
assumptions when their environment is unavailable. We illustrate the
benefits of learning-based assume-guarantee reasoning in SPIN through
the example of a resource arbiter for a spacecraft.

Keywords: Assume-guarantee reasoning, model checking, learning.

1 Introduction

This paper describes work performed in the context of a NASA project called
Reliable Software Systems Development. The aim of the project is to improve the
reliability and safety of software systems to support human and robotic explo-
ration of space. The emphasis is on tool support for the development of verifiable
software - tools will be applicable at all stages of the software development, and
will target the C language for implementation. For design, the tool that will be
supported is SPIN [18] for the following two main reasons. SPIN has been used
extensively and successfully for industrial applications. Moreover, SPIN enables
embedding of C code, which allows to combine designs with implementations.
The users of the tool are thus offered the convenience of using a single environ-
ment for verification when transitioning between different phases of the software
development.

We present here a component of this project which aims at investigating
whether/how compositional techniques can benefit SPIN in dealing with soft-
ware designs. The compositional techniques that we investigate are based on
automated assumption generation for assume-guarantee reasoning, as presented

A. Valmari (Ed.): SPIN 2006, LNCS 3925, pp. 234–251, 2006.
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in [4, 9, 13]. The techniques were implemented in the LTSA tool [12] for the
analysis of design models encoded as finite state labelled transition systems with
blocking communication. Although these techniques have proven effective in the
LTSA [25], there is no guarantee that they will be (as) successful in the con-
text of other model checkers. For example, as seen in [14], the savings obtained
with automated assume-guarantee reasoning at the design level with LTSA were
more pronounced than those obtained at the (Java) code level with the Java
PathFinder model checker [30]. The LTSA is by nature a compositional tool,
which means that any component in isolation can be targeted for analysis, with-
out the need to provide an environment to turn it into a “closed” system, which
is the case for a Java component. Moreover, the amount of detail at the code level
makes state spaces larger and may “hide” the size of the savings obtained from
a particular approach. SPIN lies somewhere in between the two tools: SPIN’s
input language – Promela – is closer to a programming language than the in-
put language of the LTSA, but it is still a modeling language, which allows to
abstract away implementation details that may hamper verification.

The work reported here is a first study of the issues and benefits of introduc-
ing compositional techniques into SPIN (which is not inherently a compositional
tool). Our approach has been to make such an evaluation in a “light-weight”
fashion, that is, to avoid re-implementing our algorithms within SPIN itself. We
will describe how we turned our existing implementations into a main program
that invokes SPIN to provide answers to specific model checking questions. As
will be discussed later, such an approach has a number of disadvantages, as for
example high time overheads. However, we claim that it provides a good way for
researchers to make a quick evaluation of the potential benefits of compositional
techniques in their model-checking environment. After all, the main interest in
model checking is to obtain savings in memory, and these can be evaluated ac-
curately with the framework that we propose.

We will discuss the technical details involved in the implementation of our
“light-weight” compositional framework for SPIN. For simplicity, we only look
into Promela programs where components communicate in a “rendez-vous” fash-
ion (i.e., Promela channels of size 0). Our evaluations also include a novel heuris-
tic presented in this paper for generating component interface specifications using
learning. The description of our approach is given in terms of a running example
of a client-server system. We then discuss the application of our techniques to
the larger case study of a resource arbiter for a spacecraft, where learning-based
assume-guarantee reasoning achieved significant memory gains.

To summarize, the contributions of this paper are: 1) an approach for fast and
easy evaluation of the benefits that compositional verification techniques based
on learning can bring in the context of any model checker, 2) a description of the
technical details involved in the implementation of this approach using SPIN,
3) the discussion of a novel heuristic for learning assumptions of components in
isolation, and 4) the application of our approach to a realistic resource arbiter
for a spacecraft, for which it achieved significant memory gains over traditional
monolithic (non-compositional) model checking.
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The remainder of the paper is organized as follows. We give background
on assume-guarantee reasoning and learning in Section 2. A description of our
proposed approach is provided in Section 3, with the technical details of its
implementation using SPIN presented in Section 4. Section 5 discusses our ex-
perience with applying our approach to the resource arbiter case study. Finally,
Section 6 presents related work and Section 7 concludes the paper.

2 Background

2.1 Assume Guarantee Reasoning

We address the problem of checking design models expressed as finite state la-
beled transition systems. We use compositional techniques for increased scala-
bility. For simplicity, let us consider two software components M1 and M2 and
a safety property P (expressed as a finite state automaton). Reasoning about
more than two components will be discussed later in Section 3.

The goal is to check if the two components operate correctly together to
achieve the desired property, i.e. to check M1||M2 |= P using model checking
techniques. Here, the parallel composition operator || denotes the product con-
struction for finite state automata, where the behavior of two components is
combined by synchronization of common actions and interleaving of remain-
ing actions. Property P encodes the desired interactions between components.
Checking M1||M2 |= P directly may be too expensive (there may not be enough
time and memory resources to complete the computation), so we break-up the
verification into two smaller sub-problems, i.e. we check M1 and M2 separately,
using assume-guarantee reasoning.

In the assume-guarantee paradigm a formula is a triple 〈A〉 M 〈P 〉, where M
is a component, P is a property, and A is an assumption about M ’s environment.
The formula is true if whenever M is part of a system satisfying A, then the
system must also guarantee P .

The simplest assume-guarantee proof rule shows that if 〈A〉 M1 〈P 〉 and
〈true〉 M2 〈A〉 hold, then 〈true〉 M1 ‖ M2 〈P 〉 also holds. This proof strategy
can also be expressed as an inference rule as follows:

(Premise 1) 〈A〉 M1 〈P 〉
(Premise 2) 〈true〉 M2 〈A〉

〈true〉 M1 ‖ M2 〈P 〉

Thus, using this rule we can show that P holds on M1 ‖ M2, by checking
〈A〉 M1 〈P 〉 and 〈true〉 M2 〈A〉 separately. More elaborate rules can be used
for this style of reasoning [4]. The underlying aim for all such rules is to make
model checking of their premises cheaper, in terms of time and in particular
consumed memory, than non-compositional verification. To achieve this, the as-
sumptions have to be much smaller than the analyzed components. Coming up
with appropriate assumptions is traditionally a difficult, manual process.

In previous work we proposed to use an off-the-shelf learning algorithm, L*, to
derive appropriate assumptions automatically. Initial approximate assumptions
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are gradually refined by means of learning from counterexample traces obtained
by model checking assume guarantee triples.

2.2 The L* Learning Algorithm

The learning algorithm used by our approach was developed by Angluin and
later improved by Rivest and Schapire. We refer to the improved version by the
name of the original algorithm, L*. L* learns an unknown regular language and
produces a DFA that accepts it – see Figure 1. Let U be an unknown regular
language over some alphabet Σ. In order to learn U , L* needs to interact with a
Minimally Adequate Teacher. The Teacher must be able to correctly answer two
types of questions from L*. The first type is a membership query, consisting of
a string s ∈ Σ∗; the answer is true if s ∈ U , and false otherwise. For the second
type of question, the learning algorithm generates a conjecture, i.e., a candidate
DFA A whose language the algorithm believes to be identical to U . The answer
is true if L (A) = U . Otherwise the Teacher returns a counterexample, which is
a string s in the symmetric difference of L (A) and U .

At a higher level, L* creates a table where it incrementally records whether
strings in Σ∗ belong to U . It does this by making membership queries to the
teacher. At various stages L* decides to make a conjecture. It constructs a can-
didate automaton A based on the information contained in the table and asks
the Teacher whether the conjecture is correct. If it is, the algorithm terminates.
Otherwise, L* uses the counterexample returned by the Teacher to extend the
table with strings that witness differences between L (A) and U .

Characteristics of L*. L* is guaranteed to terminate with a minimal au-
tomaton A for the unknown language U . The conjectures made by L* strictly
increase in size; each conjecture is smaller than the next one, and all incorrect

query: string s
true

false

conjecture: A

remove string t

add string t

false

false

true

L*

Teacher

output DFA A
such that L(A) = U

is s in U?

is L(A) = U?

Fig. 1. The L* learning algorithm
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conjectures are smaller than A. Therefore, if A has n states, L* makes at most
n − 1 incorrect conjectures. The number of membership queries made by L* is
O

(
kn2 + n logm

)
, where k is the size of the alphabet of U , n is the number of

states in the minimal DFA for U , and m is the length of the longest counterex-
ample returned when a conjecture is made.

3 Tool Architecture

We present here an initial study for a tool-based approach to compositional
verification, that uses the L* algorithm to build assumptions and the SPIN
model checking tool to check assume guarantee triples. Although using learning
to automate assume guarantee reasoning was introduced in our previous work,
there are some novel ideas that we propose here:

– We present a generic tool architecture that uses learning for automated
assume guarantee reasoning for multiple components. By generic, we mean
that the tool can be instantiated with different model checking tools for
checking assume guarantee triples; we discuss the use of SPIN here.

– The tool can be used for checking different assume guarantee rules (as be-
fore), but in addition we present a novel heuristic that allows us to derive the
interface specification for a component M1, in the absence of a specification
of its environment (i.e. M2). This interface specification can be used to check
if the component M1 behaves correctly in multiple contexts. In the past, we
have experimented with an approach that uses conformance checking [9].
Instead of using this expensive approach, we present a light-weight heuristic
that enables cheaper generation of precise interface specifications.

Oracle 1:

Oracle 2

true

false

Counterexample
Analysis

query: string s

conjecture: A

remove counterex

A

add counterex

counterex

L*

Model Checking

false

true

false

spurious

true

real

〈A〉M1〈P 〉

〈s〉M1〈P 〉

Fig. 2. Tool Architecture
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The architecture of the compositional verification tool is illustrated in
Figure 2. The architecture is derived from our previous work on compositional
verification [9]. The goal is to use learning to derive an assumption A such that
the assume guarantee triple 〈A〉 M1 〈P 〉 evaluates to true. The weakest assump-
tion Aw under which M1 satisfies P is such that, for any environment component
E, 〈true〉 M1 ‖ E 〈P 〉 if and only if 〈true〉 E 〈Aw〉. In our framework, L* at-
tempts to build Aw through iterative learning. For L* to learn Aw, we need to
provide a Teacher that is able to answer the two different kinds of questions that
L* asks. Our approach uses model checking to implement such a Teacher.

Membership Queries. To answer a membership query for s the Teacher sim-
ulates s to check if it may lead to a violation. For simplicity, our current imple-
mentation for SPIN reduces the simulation to model checking 〈s〉 M1 〈P 〉 (here
we abuse the notation and we let s denote also the automaton that accepts
string s). If there is no violation, it means that s ∈ L (Aw), because M1 does not
violate P in the context of s, so the Teacher returns true. Otherwise, the answer
to the membership query is false.

Conjectures. Our framework uses the conjectures returned by L* as interme-
diate candidate assumptions A. The teacher uses two oracles: Oracle 1 guides
L* towards a conjecture that is strong enough to make 〈A〉 M1 〈P 〉 true. Once
this is accomplished, the resulting conjecture may be too strong, in which case
our framework uses Oracle 2 to guide L* towards a weaker conjecture. There are
many options for implementing Oracle 2, and we discuss some of them below.

Oracle 1 checks 〈A〉 M1 〈P 〉. If this does not hold, the model checker returns
a counterexample. The Teacher informs L* that its conjecture A is not correct
and provides the counterexample to witness this fact. If, instead, 〈A〉 M1 〈P 〉
holds, the Teacher forwards A to Oracle 2.

Oracle 2 needs to ensure that the candidate assumption is indeed the weakest.
In the context of this work, we have implemented different versions for this oracle.

– If component M2 is available then the oracle checks 〈true〉 M2 〈A〉 (as in
our previous work). If the result of model checking is true, then, according
to the assume-guarantee rule, P holds on M1||M2. The teacher therefore
returns true, whether A represents the weakest assumption or not, because
the computed assumption (smaller or equal in size to Aw) is good enough to
prove that the property holds. If model checking returns a counterexample,
our implementation performs counterexample analysis. If the counterexam-
ple indicates a real error, the framework stops and the error is reported to the
user. Otherwise, the counterexample indicates that the candidate assump-
tion needs to be refined and it is returned to guide L*. Our implementation
has been extended to reasoning for n components M1|| M2|| ...||Mn. The sys-
tem is decomposed into two parts M1 and M ′

2 = M2||...||Mn and the learning
algorithm is invoked recursively for checking the second premise of the rule.

– We have implemented a different version of Oracle 2 (described in detail
below), which leads to the generation of the interface specification of M1,
and it does not use M2.
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3.1 Generation of Interface Specifications

As discussed, Oracle 2 is responsible for ensuring that an assumption A, shown
strong enough by Oracle 1, is not too strong. In other words, the assumption
should include all traces over the alphabet of the assumption, in the context of
which M1 satisfies the property P . By alphabet we mean the set of events that
are involved in a state machine.

We discuss here the case where the alphabet of the property and the alphabet
of the assumption are the same. We restrict ourselves to this case for simplicity,
but also because it covers all the examples that we discuss in this paper. We are
currently studying different cases and plan on extending the proposed heuristic
heuristic for those.

Let TA denote the set of all traces over the alphabet of the assumption A.
Then A should include all traces in TA that satisfy the property; if some trace
t ∈ TA that satisfies P is not in the current candidate assumption A, then A is
too imprecise, so t is returned to the learning algorithm for the assumption to be
refined. The above check can be formulated as P |= A, and can be performed by
a model checker, with the counterexamples returned to the learning algorithm.
Our proposed heuristic for Oracle 2 for generating interface specifications is to
therefore implement P |= A.

Note that our heuristic is not always accurate, meaning that it may fail to
report traces that the assumption does not include even though it should. The
traces that it may miss are traces that violate P but that will never be exercised
in the context of the component M1. These traces are the traces of !M1||!P ,
where !M1 denotes the complement of M1, and similarly for P . Computing the
complement of M1 involves determinization, which may increase the state-space
of M1 exponentially, in the worst case. For this reason, we do not include this
check in our heuristic. One may argue that many components do not exhibit this
worst-case complexity. For such components, however, rather than computing
!M1||!P , it would make more sense to construct the assumption directly, using
the algorithm presented in our previous work [13]. Learning was introduced
in [9] in order to avoid the potential complexity of the computation presented
in [13].

It is worth mentioning that, although our heuristic as currently implemented
may not always compute the weakest assumption, our experiments discussed
later in the paper demonstrate that it is quite effective in practice.

4 Implementation

Our implementation makes use of our previous Java implementation of L* in
the context of the LTSA tool [9, 12]. The implementation supports the analysis
of multiple components through recursive invocation and the new heuristic for
Oracle 2. Moreover, the learning now runs as a stand-alone application that
invokes SPIN (from within Java) to answer queries and conjectures.

We consider here only a subset of Promela, where components are Promela
processes that communicate through rendezvous channels. We consider safety
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mtype = {u1, u2, Nobody};
chan request = [0] of {mtype};
chan cancel = [0] of {mtype};
chan grant = [0] of {mtype};
chan deny = [0] of {mtype};

active proctype server() {
mtype resUser = Nobody;
mtype u;
S0: if

:: request?u ->
if
:: (resUser == Nobody) -> grant!u; resUser = u; goto S0;
:: else -> deny!u; goto S0;
fi;

:: cancel?u ->
if
:: (resUser == u) -> resUser = Nobody; goto S0;
:: else -> goto S0;
fi;

fi;
}

Fig. 3. Promela code for server

proctype client (mtype u) {
Init: if

:: request!u
fi;

PendingReservation:
if
::grant?eval(u)
::deny?eval(u) -> goto Init;
fi;

PendingCancel:
if
:: cancel!u -> goto Init
fi;

}

trace {
Q0: if

::grant?u2 -> goto Q4;
::grant?u1 -> goto Q5;
fi;

Q4: if
::cancel?u2 -> goto Q0;
fi;

Q5: if
::cancel?u1 -> goto Q0;
fi;

}

Fig. 4. Promela code for client (left) and mutual exclusion property (right)

properties that refer to the rendezvous communication between components.
We leave for future work the extension of the approach to handling the full
Promela language. We selected this subset of Promela because it bears a close
correspondence to the type of models that we analyze in the context of LTSA.
Moreover, several systems can be described in this subset. For example, the
work presented in [10, 27] shows how abstracted Java and Ada programs can be
translated into this exact subset of Promela.
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We illustrate the implementation on a simple Promela model for a client
server application – see Figure 3 and Figure 4 (left). The model has a server and
two clients that communicate through global rendezvous channels. Note that the
MER case study is a more complex version of this type of system.

The clients send requests to make a reservation for using a common resource,
they wait for the server to grant the reservation, they use the resource, after
which they cancel the reservation. The server can grant or deny a request, such
that the resource is used only by one client at a time. We analyzed a property
stating that the resource shall be used mutually exclusive.

There are many ways of encoding (safety) properties in SPIN: i.e. as basic
assertions, never claims or trace assertions [19]. We chose to encode properties as
trace assertions: the types of safety properties that we typically encounter refer
to valid sequences of channel operations, and trace assertions are specifically de-
signed for formulating such sequences. In Section 5 we discuss other formalisms
for encoding assume guarantee triples. Figure 4 (right) shows the trace asser-
tion for the mutual exclusion property. The assertion specifies the correctness
requirement that receive operations on channel grant with u1 and u2 alternate
with receive operations on cancel with u1 and u2, respectively. In other words,
for mutual exclusion to be guaranteed, when a user is granted the resource, then
this user needs to cancel it before it gets granted to a different user. The trace
assertion defines an automaton that monitors the system execution (it changes
state when a channel operation that is within its scope is executed).

In order to analyze this model using our learning based implementation,
we first brake up the system into its components, i.e. processes client(u1),
client(u2) and server(). We also need to provide the alphabet of actions for
the candidate assumptions. As discussed in Section 3.1, we set the alphabet of
the assumptions to be the same as the alphabet of properties.

Checking Assume Guarantee Triples. In our approach, we use SPIN to
answer queries and oracles, which are encoded as assume guarantee triples of the
form 〈A〉 M 〈P 〉. Here A denotes a deterministic finite state automaton that may
encode traces (in the case of queries) or candidate assumptions generated by L*.
Property P is also a deterministic finite state automaton (encoded as a trace
assertion). The assumptions define execution environments for the components
under analysis. We therefore encode them as Promela processes that run in parallel
with the analyzed components (and thus restrict their behavior). The assumption
A and the property P are used to examine the component M and to check whether
behaviors that are allowed by the assumption may lead to a property violation.

To check an assume guarantee triple, the teacher first creates a file that en-
codes the assumption as a Promela process and the property as a trace assertion,
and it invokes SPIN i.e., it executes the following commands:

spin -a M1.promela
cc -o pan pan.c -DSAFETY
./pan -E

The teacher waits for the verification to complete and it parses the output of the
verification process to check if there were any assertion violations, in which case



Towards a Compositional SPIN 243

Fig. 5. Promela code for a query, an assumption and the universal environment

it returns false (together with the counterexample reported by SPIN) to the L*
algorithm; otherwise, it returns true. All these steps are automated.

As an example, Figure 5 shows the Promela process for checking a query on
component client(u1) for string “grant!u1; grant!u2;”. Figure 5 also shows
the Promela process for a CandidateAssumption for client(u1).

We should note that both properties and assumptions are global, i.e. they may
refer to actions that are not local to the component under analysis. In order to
check in isolation whether a component violates a global property, we need to
provide an environment that substitutes the rest of the system, as typically per-
formed in model checking. In the context of checking assume-guarantee triples,
the environment is the universal environment as restricted by the assumption. To
simulate that, we provide for each component a universal environment for those
rendezvous actions that are not matched with actions in the provided assump-
tion. For example, Figure 5 shows such a closing environment for client(u1)–
in an infinite loop, the process performs rendezvous for the actions that are un-
matched by client(u1) and by the process encoding the assumption. Note that
the same universal environment is used for checking all the queries and oracles
for one particular component (and one property).

5 Analysis of a Resource Arbiter

5.1 Description

We experimented with our approach in the context of a model derived from a
component of the flight software for JPL’s Mars Exploration Rovers (MER) (see
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Request, Cancel

Grant, Deny

Rescind

Fig. 6. Arbiter Architecture

Figure 6). The MER software contains 11 user threads (Ui). Each thread serves
one specific application, such as imaging, controlling the robot arm, communi-
cating with earth, and driving. There are 15 shared resources on the rover, to
which access is controlled by an arbiter module (ARB). The arbiter module pre-
vents potential conflicts between resource requests, and enforces priorities. For
instance, it would not make sense to start a communication session with earth
while the rover is driving. The system has been analyzed with SPIN before, in
a non-compositional way - a detailed description can be found in [20].

5.2 Analysis

We present here the results of applying compositional analysis for a subproblem
with 5 user threads and 5 shared resources. A design-level Promela model of the
system was created based on available documentation (3000 lines of Promela
code) and was used to check several properties. We report here the results
for checking a mutual exclusion property (P ) stating that communication and
driving can not happen at the same time.

The compositional techniques discussed in this paper work on a specific or-
dering of the components in the system. For the analyzed system, we ordered
the user components first as (U1 ... U5) and the arbiter module last as (ARB).
As described in [7], compositional techniques tend to be sensitive to different
decompositions of a system. The reason we selected this particular ordering was
that part of the project involved experimenting with generating assumptions in
the absence of an arbiter component.

Table 1. Arbiter Analysis Results

Analysis MEM State Space Time: tmodel + tcompile + trun Assumption Size

Monolithic 544.019 MB 3.91653e + 06 0.021s + 0.854s + 33.745s N/A
Recursive 2.622 MB 1002 0.038s + 1.142s + 0.032s 6 .. 12
Heuristic 2.622 MB 2941 0.044s + 1.392s + 0.021s 12
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We then used the learning tool described in Section 3 to generate automati-
cally assumptions A1 ... A5 such that:

〈A1〉 U1 〈P 〉
〈A2〉 U2 〈A1〉
〈A3〉 U3 〈A2〉
〈A4〉 U4 〈A3〉
〈A5〉 U5 〈A4〉

〈true〉 ARB 〈A5〉
For this purpose, we manually created environments that exercise each com-

ponent, as described in the previous section. We also specified the alphabet of
interface actions to be used for building the assumptions. We experimented with
the recursive technique that we have implemented for handling multiple compo-
nents and with the heuristic approach, that analyzes one component at a time. In
both cases we were able to compute assumptions for the above premises to hold.
Hence, according to the compositional rule presented in Section 2, we concluded
that the system U1||U2||U3||U4||U5||ARB indeed satisfies P .

The results of the analysis applied to the arbiter system are shown in Table 1.
We used a 2.2 GHz dual processor Pentium with 1 Gb of memory running Red
Hat Enterprise Linux WS. In the table, row “Monolithic” reports the results
obtained from the verification of the system in a non-compositional way, and rows
“Recursive” and “Heuristic” report the results obtained by the application of the
recursive learning scheme and the heuristic described in Section 3.1, respectively.
Specifically, we report the memory and time consumed for verification of the
system. For the compositional techniques, the reported time and memory refer
to the maximum time or memory consumed to for checking a single premise.
They do not include the process of generating the assumptions (reported in
Table 2), but rather the process of applying the assume-guarantee premises once
the assumptions are available.

The reported times are divided into three parts: tmodel is the time to create
a C model from a Promela model, tcompile is the compilation time, and trun

is the time to run the specific verification task in SPIN. We also report the
size of the assumptions used for compositional verification. Using the recursive
algorithm yields assumptions that have 12 states (A1, A2 and A3) and 6 states
(A4 and A5) while the heuristic approach yields assumptions of size 12 for each
component (for this case study, all the assumptions generated using the heuristic
approach are the weakest). We need to study further the trade-offs between the
two learning approaches: the heuristic approach has the advantage that it can
be used for the analysis of a component in isolation (in the absence of the rest of
the over-all system, and maybe even before it is available), while the recursive
approach may yield smaller assumptions (as it is the case here). This is expected
to happen for some systems, because the recursive approach has knowledge of
the environment of each component, and may therefore produce stronger (and
smaller) assumptions.

The results indicate that compositional verification can achieve significant
memory savings over non-compositional verification.
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Table 2. Cost of Assumption Generation

Analysis queriesoracle 1oracle 2 tSPIN + tLearn MEMLearn tLTSA MEMLTSA

Recursive 4884 48 1 5646.365s 1743 K 42.87 s 20400K
Heuristic (A1) 852 12 1 818.213s 508 K 3.076 s 4845K

Cost of Assumption Generation. Table 1 reports the results of composi-
tional analysis using assumptions that are already available. Let us now analyze
the cost of building these assumptions using learning based techniques. Table 2
reports the results of running the two learning approaches for assumption gener-
ation: for the recursive approach, we report the number of queries, the number
of oracle invocations and the total time for running the algorithm (this includes
tLearn – the time of running the Java implementation that makes external calls
to SPIN – plus tSPIN – the total time of running SPIN multiple times for an-
swering queries and conjectures). For interface generation, we report the same
data for the generation of an assumption for only one component (U1) – the
results for the rest of the components are similar. Therefore, the total time of
generating all five interface specifications is approximately 4095 s (5 times 819
s). Table 2 also reports MEMLearn – the memory consumed by our Java imple-
mentation (this does not include the memory consumed by a SPIN run – which
is reported in Table 1).

Our experiments indicate a serious time overhead, where a dominant factor
is the compilation time for queries. For example, there are 852 queries made for
the generation of the interface specification of component U1, and the cost of
running a query is 0.045s + 1.283s + 0.011s, where the compilation time 1.283s
clearly dominates.

Therefore we looked into ways of reducing the compilation time overhead
for queries. In particular, we experimented with an alternative way of encoding
queries – as never claims – in order to take advantage of the SPIN’s feature
that allows for the separate compilation of a model and of properties (written as
never claims). Note that never claims can be used not only to define correctness
properties, but also to restrict the search of the verifier to a user-defined subset
of the system [19]. It is in the latter fashion that we use never-claims to attempt
more efficient checking of queries.

As an example, Figure 7 shows the never claim used for checking a query
“grant!u1; grant!u2;” (the analog of the query in Figure 5). Here grant u1,
grant u2, cancel u1 and cancel u2 are global boolean flags added to the
Promela model of a component. They are set to true whenever a correspond-
ing rendezvous occurs and are reset to false on any other action. For example,
grant u1 is set to true (while all the other flags are reset to false) atomically with
grant?u1. The reason we use these flags is that SPIN does not allow rendezvous
actions in never claims. The effect is that the never claim restricts a verification
run to all the states that conform to the trace (note that the flags need to be re-
set after every system step execution, to make sure that the never claim restricts
correctly the system). For technical reasons (SPIN does not allow never claims
and trace assertions to be checked at the same time), we changed the encoding
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never {
do
:: grant_u1 -> break
:: !grant_u1 && !grant_u2 && !cancel_u1 && !cancel_u2
od;
do
:: grant_u2 -> break
:: !grant_u1 && !grant_u2 && !cancel_u1 && !cancel_u2
od;
do
:: !grant_u1 && !grant_u2 && !cancel_u1 && !cancel_u2
od;
}

Fig. 7. A query encoded as a never claim

for properties (as monitors). The encoding of queries as never claims allows us
to compile the component model combined with the property only once and to
compile separately the never claims for each query. Note that the same approach
can be used for encoding assumptions.

With this new encoding, we obtained a significant reduction in running time.
For example, the cost of heuristic interface generation for U1 was reduced by
a factor of 4 (from 818.213s to 185.185s). We expect a similar reduction to be
obtained for running the recursive algorithm, and even further reduction for the
separate compilation of assumptions.

5.3 Discussion

The implementation described is a first step towards introducing learning-based
assume guarantee reasoning in the SPIN model checker. The purpose of this
work is fast experimentation with the algorithms in the context of examples
encoded in Promela. We intend to explore several directions for improving the
performance of this approach in future stages of the project.

The current implementation invokes SPIN for each query and for the two
oracles. This involves creating appropriate Promela files, compiling them and
running the verification at each step. While this approach works well for small
examples, for realistic (large) examples, parsing and compiling the Promela files
at each step is costly in terms of time. We believe that a first step towards a
better integration will be the creation of specialized algorithms for efficient trace
simulation (for checking queries) and for checking properties in the presence of
restricting assumptions; these algorithms should allow for separate compilation
of models, assumptions and properties.

We should note that we encountered similar timing overheads with the imple-
mentation of the learning assume-guarantee approach as a plugin for the LTSA
model checker [12], as compared to our initial implementation within the core of
the LTSA tool [9]. In that implementation, we encountered a significant perfor-
mance overhead due to the fact that the plugin communicates with the LTSA
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by placing descriptions of the models in the Edit tab. As a result, each query
or conjecture would require parsing and computing the component model. The
avenue we took to solve the problem was to implement our techniques in the core
of the LTSA and expose them to the LTSA plugins, while keeping the interfacing
for our assume-guarantee reasoning as an LTSA plugin. As a result, the running
time of our iterative learning algorithms is low.

For example, the last two columns in Table 2 show the results of running the
LTSA implementation for the arbiter case study. The results indicate that an
implementation directly in SPIN is likely to similarly improve the performance
significantly. Note that part of the gain of having the learning algorithms run
within LTSA is that the LTSA can store the results of a particular composition
(for a component, for example) and use it in the analysis of multiple properties.
The impact can be great in the evaluation of queries, and it may be worth adding
this capability in SPIN, for cases where that would be appropriate (when, for
example, the component state space is manageable).

A nice feature that the LTSA supports is that the plugin can extend the user
interface of the tool, and can be invoked from the LTSA’s graphical user interface.
As a result, the user can easily customize their assume-guarantee problem, i.e.,
select the modules and properties that participate in a compositional proof, as
well as the rule that is to be applied. In the future, we would like to take a similar
approach in integrating our techniques using XSpin. To achieve this, we need to
understand better what mechanisms are available or can be added for achieving
Spin/XSpin extensions. Ideally, we would like to display all the components (i.e.
processes) in a Promela specification, and to allow the user to choose which
components to analyze using assume guarantee reasoning.

6 Related Work

Assume-guarantee reasoning [8, 16, 22, 28] is based on the observation that large
systems are being build from components and that this composition can be
leveraged to improve the performance of analysis techniques. To reason formally
about components in isolation, some form of assumption (either implicit or ex-
plicit) about the interaction with, or interference from, the environment has to
be made. Several frameworks have been proposed to support this style of rea-
soning. For example, the Calvin tool [11] provides support for assume guarantee
reasoning for the analysis of Java programs, while the Mocha toolkit [2] provides
support for modular verification of components with requirement specifications
based on the Alternating-time Temporal logic. However, the practical impact
of these previous approaches has been limited because they require non-trivial
human input in defining appropriate assumptions.

As mentioned, in previous work [9, 13], we have developed techniques for
performing assume-guarantee reasoning of software in a fully automated fashion.
Our techniques target components with message-passing communication - a par-
adigm used in NASA mission critical software (e.g. MER code). The approach
presented in [9] uses L* to build incrementally appropriate assumption, and it
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forms the basis of the work presented in this paper. Since then, several assume
guarantee reasoning frameworks that use L* for learning assumptions have been
developed – [3] (see also [1]) presents a symbolic approach to assumption leaning,
while [5, 6] use learning based assume guarantee verification for communicating
finite state automata specifications extracted from C code. The work presented
here is a first attempt to introduce automated assume guarantee reasoning in
SPIN. In the past [27] we have studied the use of assume guarantee reasoning
in the context of SPIN – however, in that work, the assumptions were provided
manually by the user.

A related effort [17] includes a framework for thread-modular abstraction
refinement, in which assumptions and guarantees are both refined in an iterative
fashion. The framework applies to programs that communicate through shared
variables, and uses predicate abstraction techniques for the iterative construction
of assumptions.

The problem of generating an assumption for a component is similar to
the problem of generating component interfaces to deal with intermediate state
explosion in compositional reachability analysis. Several approaches have been
defined for automatically abstracting a component’s environment to obtain in-
terfaces [7, 23]. These approaches do not address the incremental refinement of
interfaces.

A number of machine learning approaches has been investigated recently in
the context of software verification, with a goal different then ours. One approach
uses learning for computing the set of reachable states in regular model checking
[29]. The work in [15] uses the L* to generate a model of a software system
in a black box fashion; the model then be fed to a model checker for analysis.
Similarly, [21] presents learning techniques for building software models for ver-
ification, while a recent approach [24] uses inductive learning to build precise
abstractions for program analysis.

7 Conclusions and Future Work

In this paper we discussed our initial experience with automated assume guar-
antee verification based on learning in the context of SPIN. We presented a
light-weight tool that uses learning to build assumptions incrementally and that
makes external calls to SPIN to provide all the model checking related answers.
We discussed the application of the tool for the verification of a realistic soft-
ware system – the resource arbiter for a space craft – which resulted in significant
memory gains as compared to traditional monolithic model checking.

While this light-weight implementation allows for a quick evaluation of the
merits of learning based assume guarantee reasoning in SPIN, it may result in
serious performance overheads and we discussed in the paper ways of improving
our implementation. In the future, we plan to work towards a tighter integration
in SPIN and to investigate how we can further improve the performance of our
approach. One possible way is to run in parallel the checks for multiple queries.
We also plan to study how our algorithms extend to alternative communication
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mechanisms (buffered message passing) and to handling liveness properties –
the work on learning infinitary regular sets [26] may be a good start in this
direction. Another issue that we want to investigate is to make a finer distinction
in our algorithms between the interface actions of a component (i.e. to distinguish
channel read and write operations) and to study how this affects our approach.
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12. D. Giannakopoulou and C. S. Păsăreanu. Learning-based assume-guarantee verifi-
cation (tool presentation). In Proc. of SPIN’05 Workshop, volume 3639 of Lecture
Notes in Computer Science. Springer, 2005.



Towards a Compositional SPIN 251
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1 Introduction

Rule-style specification of protocols are widely employed. They are often written
in languages such as Murphi [6], TLA+ [14], or BlueSpec [1], and are often used
for modeling cache coherence, file systems, message networks, and solutions to
similar locking/concurrency problems. Protocols specified in these notations are
a collection of unordered rules of the form guard(state) → atomic updates. The
state of systems modeled in such notations can be a global aggregate datatype
such as a record of arrays of simpler types or other records. There is no notion
of a sequential process with local scope or FIFO channels1, and each rule tends
to update multiple fields of the global state. Such specifications are natural to
write for domains such as cache coherency, where designers prefer a declarative
approach to modeling using an unordered collection of rules.

Hardware systems and protocols often have a very large degree of concur-
rency, and it is natural to view this concurrency in terms of collections of rules,
where many rules may update the same part of the global state space. A similar
effect can be achieved in process based paradigms such as Promela/SPIN [10],
for example by implementing each rule as a process. However, where the division
of state variables into global and local components is either not apparent, or not
possible, the process based approach has no advantages, and presents the same
difficulties and challenges to state space reduction as rule based systems.

Also, such unordered collection of rules are often automatically compiled into
the underlying cache coherency engine [1]; from this perspective, the unordered
and declarative nature of the rules leads to concurrent hardware that can be
modularly understood.

SAT Based Independence Computation, Exploiting Local Invariants: Given these
differences in specification style, however, it is clear that one of the main weapons
to combat state explosion of these protocol models during enumerative model
checking—namely partial order reduction (PO reduction or POR)—becomes dif-
ficult to realize for rule based systems. Partial order reductions [9, 22] are based
on avoiding redundant interleavings that are explored by explicit state enumer-
ation model checkers to preserve concurrency semantics. Computing the inde-
pendence relation over transitions is a crucial aspect of partial order techniques.
Independence of a pair of transitions formalizes the notion that they don’t in-
terfere with each other’s enabledness at a state, and result in the same state
no matter which order they’re executed in. In general, the greater the number
of pairwise independent transitions in a system, the greater is the reduction
achievable using partial order techniques.

Traditional partial order reduction algorithms rely on a syntactic check of
transitions for references to (global) state variables, in order to compute the
1 While FIFO channels are convenient for modeling, and help obtain the benefits of

PO reduction, (i) rule based languages we know about do not support channels, and
(ii) designers often want something other than any one of the standard varieties of
channels such as FIFO, sorted, lossy, etc., such as reordering queues in the case of
the Wildfire protocol [15].
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independence relation. The rationale is that transitions that refer to disjoint
sets of state variables can safely be marked independent of each other. However,
in the presence of high-level data structures, especially arrays, this approach can
be overly conservative. For example, consider the two guard::action pairs below:

1. ((i >= 0) :: a[i + 1] :=True)
2. ((i <= 0) :: a[i + 2] :=False)

A syntax-based PO reduction approach (such as used in SPIN [10]) would classify
rules 1 and 2, which both access the same array variable, as dependent. Our
symbolic simulation based approach would, on the other hand, determine that
the rules are independent, since in all states where both rules are enabled, the
rules access different indices of the array a. In particular, our independence
computation based on SAT will, as most used definitions of independence require
(e.g., [5, Chapter 10]), (i) start the system from a general symbolic state s (all
states are broken into the individual bits), (ii) pick a pair of rules r1 and r2,
(iii) determine whether, whenever r1 and r2 are enabled in s, firing one rule
leaves the other enabled, and (iv) determine whether r1(r2(s)) = r2(r1(s)) (r1(s)
denotes the state that results from executing the action of rule r1 at state s).
All this is performed by symbolically simulating the actions of rules, and then
performing SAT checks on the resulting propositional expressions. For example,
the last step is realized by seeing whether r1(r2(s)) �= r2(r1(s)) can be satisfied.

Obviously, doing this analysis starting from a general starting state can re-
sult in pessimal independence information. Later we show how local invariants
can help sharpen the analysis to states that contain reachable states but exclude
certain unreachable states. One of our main results is that the kinds of invariants
that tend to give sharp results regarding independence are not those that we are
proving at the top level (e.g., cache coherence), but those that (i) provide some
information about which rules might follow which other rules, and (ii) those that
tend to capture relationships between different global variables. More specifically,
we observe from the available list of benchmark protocols written by others that
one often employs more variables than necessary in a protocol for modeling con-
venience. Our observation is that often it is necessary to pin down relationships
that might exist between these variables. In any case, once a local invariant g1
is obtained, a rule such as g → action is strengthened into g ∧ g1 → action. We
show that such strengthened rules yield a better (larger) independence relation.

Clearly, we do not wish that the solving the problem of POR lead to another
hard problem, namely that of invariant discovery! Here, we have found a simpler,
but often equally effective approach. We show a method by which designers can
(i) guess these invariants (even if they are incorrect, we will be safe, as we show
below), (ii) perform the independence check with respect to modified rules of the
form g ∧ g1 → action, but (iii) while performing model checking using our POR
algorithm (that of course enjoys the benefit of the larger independence relation),
be checking not merely original property but actually original property ∧(g ⇒
g1). If there are more guards than one strengthened in this way, for each such
g and its strengthening gi, we would have the conjunct g ⇒ gi in the top-level
property being verified. This way, if any of the gi excludes a state that g includes,
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it will be detected while verifying the modified property that includes g ⇒ gi. A
similar approach is presented in [20], but they only consider invariants related
to synchronization.

Symmetry and Carry-over of Independence Computation: We observe that many
of the protocol descriptions in languages such as Murphi employ scalarsets [12].
Scalarsets are a specialized data type that, by restricting the types of operations
permitted on elements of the type, guarantee symmetry of systems with respect
to permutations over elements of the scalarset type. Furthermore, the variables
that are of scalarset type participate in ruleset constructs inside protocols. Rule-
sets of Murphi model parametric sets of rules. For example, if a cache coherence
protocol has N nodes, it is quite likely that there is a ruleset collectively modeling
each node’s behavior. In the Murphi model checker, rulesets defined over scalar
set parameters are handled as follows: (i) the user picks a number (e.g. 4) for the
size parameter of the rule set, (ii) the model-checker creates four copies of the
rules, and (iii) while model checking, these four rules are non-deterministically
fired in all possible ways (this is necessary, as each rule instance may be, for ex-
ample, modeling the behavior of a different caching node), (iv) after each state
is generated, Murphi’s symmetry algorithm performs state canonicalization [12],
thus generating representative states out of each.

Our approach to exploit the scalarset symmetry is as follows: we demonstrate
that under certain conditions, we can, for the purposes of SAT-based indepen-
dence computation, analyze an instance of size N but model-check an instance
M > N . This way, the number of rules analyzed as well as the data structures
involved in the analysis (e.g., if the data structure sizes were determined by N)
would be much smaller. Later, the user may model-check an instance M that is
much bigger than N , because currently parameterized proofs are hard to obtain
and the designer takes the approach of flushing out bugs in as high an instance as
they can. However, in model checking the M -sized instance, the user can employ
the same independence relation as calculated on the basis of an N -sized instance.

Ample Set Computation Exploiting Transactions: In ample set based POR algo-
rithms (e.g., [5, Chapter 10]), computing the independence relation is only part of
the story; ample set formation is a run-time activity where independence comes
into play. The search algorithm computes at each state in the search space a set
of transitions called an ample set. The ample set is a subset of the enabled tran-
sitions, and the search algorithm only generates next states via the transitions in
the ample set. Ample sets are minimal (subject to certain sufficient conditions)
subsets of the set of enabled transitions at a state, and act as a locally optimal
heuristic to maximize global state space reduction. Naturally, smaller ample sets
are preferred over larger ones. In our approach, ample sets are computed by
picking a seed transition and performing a least-fixed-point computation based
on the dependence relation. We then check to ensure that the set thus obtained
satisfies a set of sufficient conditions C0 - C3[5, Chapter 10] (see Appendix A).
Picking the seed transition turns out to be an important factor in forming small
ample sets, and we have discovered that the transactional nature of many of the
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systems modeled using the rule-based paradigm allows for a particularly effective
choice of the seed transition. These transactional systems often operate in fairly
sequential phases of requests, intermediate processing, and grants. Thus, detect-
ing the phase of the transaction in progress allows us to pick, as seed transitions,
transitions that will take the current transaction forward, in effect delaying the
“scheduling” of new transactions as long as possible. The sequential nature of
transactions means that only a very few (often just one) transitions are enabled
at any given point in the transaction, resulting in small ample sets.

Roadmap: Section 2 goes over the notations and definitions. In Section 3,
we introduce the notion of exploiting scalarset symmetry, and how it can be
used to extrapolate independence results for parameterized systems. We also
state and prove our main theorem regarding this result. Section 4 discusses the
use of transactions to form more effective ample sets, and Section 5 proposes
a novel technique called guard strengthening to soundly refine rule-based sys-
tems to achieve higher independence between transitions. Section 6 discusses
experiments and results. Related work and conclusions are in Section 7.

2 Background, Notations and Definitions

A labeled finite state transition system F is a 5-tuple 〈S, T, I, P, L〉 where S is a
finite set of states, T is a finite set of deterministic transitions, such that every
t ∈ T is a partial function t : S �→ S, I ⊆ S is the set of initial states, P is a set of
atomic propositions, and L : S �→ 2P labels each state with a set of propositions
that are true in the state. Without loss of generality, we assume that T includes
a transition from every state to itself. A labeled path of a finite state system is
an infinite sequence starting with a state and then alternating transitions and
states,

s0, t0, s1, t1, s2, t2, . . . ,

where ∀i ≥ 0 : ti(si) = si+1. A labeled path is called a labeled run if it starts
with a state in I. For any labeled path p of a system, we define the predicate
before(p, t1, t2) to be true when t1 occurs before the earliest occurrence of t2
in p, or t2 does not occur in p. Let the set of all labelled paths of a finite state
system be P . The restriction of P with respect to a state s, written P|s, is
the set of all labelled paths in P starting from the state s. A transition t is
said to be enabled at a state s if ∃s′ ∈ S : t(s) = s′. We define the predicate
en(s, t) that is true exactly when t is enabled at s. We also define the predicate
enabled(s) = {t ∈ T | en(s, t)}. Two transitions t1 and t2 are independent iff
the following conditions hold:

– Enabledness(En): ∀s ∈ S : en(s, t1)∧ en(s, t2) ⇒ en(t1(s), t2)∧ en(t2(s), t1)
– Commutativity(Co): ∀s ∈ S : en(s, t1) ∧ en(s, t2) ⇒ t1(t2(s)) = t2(t1(s))

We define the predicate ind(t1, t2), that is true exactly when t1 and t2 are
independent, and dep(t1, t2) = ¬ind(t1, t2). Independence is a symmetric, ir-
reflexive relation. A property π of a system is a formula in next-time free linear
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temporal logic [17] (LTL−X), such that the set of propositions in the logic is P .
In this paper, however, we restrict our attention to invariant properties, which
are properties that must hold at every reachable state of the system. For any
property π, we define props(π) ∈ 2P as the set of propositions occurring in
π. A transition t is invisible with respect to a property π, written as invπ(t),
iff:

∀s1, s2 ∈ S : t(s1) = s2 ⇒ L(s1) ∩ props(π) = L(s2) ∩ props(π)

Our partial order reduction algorithm has two phases, static and dynamic.
In the first, static phase, we compute the truth values of the dep relation for
each pair of transitions of the system. For rule based systems (and Murphi in
particular, on which our implementation is based), as mentioned earlier, transi-
tions are described as rules, each of which is a guard/action pair. To compute
the dep relation for a pair of rules, we symbolically simulate the effect of each
rule’s action, to build propositional expressions representing the enabledness and
commutativity conditions. Murphi also allows the parametric definition of rule-
sets, as mentioned earlier. When computing the dep relation for a pair of rules
from rulesets, we employ various techniques to avoid the combinatorial explo-
sion that would occur if we were to actually instantiate every parameterized rule
with every possible value. For example, for a pair of rules from different rulesets,
we build propositional expressions that leave the symbolic variables representing
the parameters totally unconstrained. When checked by a SAT solver, this effec-
tively corresponds to checking every pair of instances of the two rules. Of course,
this is conservative, because if the SAT solver finds a satisfying assignment to
one of these expressions, it only means that two particular rule instances (cor-
responding to the values assigned to the parameter variables by the satisfying
assignment) are dependent. Our algorithm, however, will mark every pair of rule
instances dependent, in this case. Similar techniques are also applied when com-
puting the dep relation for rules from the same ruleset, as well as for a single
rule and a rule from a ruleset.

When the static phase terminates, we have obtained a complete dep rela-
tion, for every pair of rule instances of the system. In the dynamic phase of POR,
ample sets are constructed at each state visited, during a depth first traversal
of the state graph. At each state, we pick an arbitrary enabled transition called
seed, and form an ample set around it, as follows. We first obtain the dependency
closure of all transitions that are dependent on seed. Now we are left with en-
abled independent transitions, and disabled dependents (clearly, another possible
category, namely disabled independent transitions are completely inconsequen-
tial for ample-set formation). We have to ensure (as condition C1 of [5, Chapter
10] requires) that there is no transition in the unreduced state graph such that
one of these disabled dependent transitions could fire before one of the tran-
sitions in the current ample set. This could easily happen if one of the enabled
independent transitions could fire and “wake up” one of the disabled dependent
transitions. We have experimented with two schemes, the second of which gives
better performance:
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Approach 1: If the disabled dependent set is empty, then the ample set is the
dependency closure set (thus it leaves out the enabled independent transitions),
else all enabled transitions are in ample.

Approach 2: If there are any disabled dependent transitions, ensure that they
can fire only as a result of any one of the transitions in the dependency closure
set firing (thus precluding that they may occur before one of the ample set
transitions). This information can be computed and stored in the static phase
of the POR algorithm, thus avoiding a run-time cost.

In Section 4, we discuss how these seed transitions are picked according to
the weighing scheme described earlier. We do have implementations of the other
checks, namely C0, C2, and C3, as [5] requires. In particular, for the C3 condition
which avoids ignoring, we have an implementation that implements an on-the-fly
in-stack check. Details of these checks are omitted, but can be found in [3].

3 Computing Independence for Parametric Systems

A Murphi system description is considered to be parameterized if the state vari-
ables and transitions are indexed over one or more parameters. In this paper,
we only consider parameterized systems with one parameter. In the absence of a
general method for verification of parameterized systems, it is common to verify
a system for multiple instances of the parameter. However, realistic system sizes
increase greatly with an increase in parameter size, and so does the complexity

CONST
num_clients : 3;

TYPE
message : enum{empty, req_shared, req_exclusive,

invalidate, invalidate_ack,
grant_shared, grant_exclusive};

cache_state : enum{invalid, shared, exclusive};
client: scalarset(num_clients);

VAR
channel1: array[client] of message;
cache: array[client] of cache_state;

RULESET cl: client do
RULE "client requests shared access"

cache[cl] = invalid & channel1[cl] = empty ==>
BEGIN channel1[cl] := req_shared END;

RULE "client requests exclusive access"
(cache[cl] = invalid | cache[cl] = shared )
& channel1[cl] = empty ==>
BEGIN channel1[cl] := req_exclusive END;

END;

Fig. 1. A simple parameterized Murphi system outline
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of computing the independence relation. We show that for such parameterized
systems, it is sufficient to compute the independence relation for a small para-
meter size. Model checking can be performed for higher parameter sizes using
this independence relation.

As a simple example, consider the Murphi system outline of Figure 1. This
is an extract from the parameterized German protocol, and shows the two tran-
sitions responsible for making new requests for access to a cache line, in either
the shared or exclusive mode. The parameter of this system is the number of
clients, represented by num_clients. The first thing to note is that there are
actually multiple instances of each transition (rule) in the system, for any value
of num_clients. In this case, there are 3 instances of each rule, corresponding
to the range of the variable cl. Theoretically, therefore, we need to check 9 pairs
of rules for dependence (each of the 3 instances of the first rule against each
of the 3 instances of the second rule). However, as we show in [3], it suffices to
check a pair where the indices have the same value, and a pair where they have
different values, and conservatively extrapolate the results to all pairs. So in the
given system, we might choose to check rule 1[cl ← cl1] (the instance of the
first rule with cl set to cl1) against rule 2[cl ← cl1] (a pair with the same index
value), and rule 1[cl ← cl1] against rule 2[cl ← cl2] (a pair with different index
values). Here, cl1 and cl2 are symbolic values that are left unconstrained in the
propositional expressions that are passed to the SAT solver. In the first case, if
the SAT solver is unable to find a satisfying assignment, this implies that none
of the rule instances with the same parameter value are dependent, since we left
the parameter value unconstrained. In the second case, our algorithm conjoins
to the propositional expressions representing enabledness and commutativity, a
clause that constrains cl1 and cl2 to be different from each other. Thus, if the
SAT solver is unable to find a satisfying assignment, it is evident that none of
the rule instances with different parameter values are dependent on each other.

What does the truth of the above checks for one value of num_clients tell us
about the truth of the corresponding checks for a different value of num_clients?
Consider first the case of the two rules with the same value for the ruleset
parameter cl. Obviously, these two rules are dependent, for they pass neither
the enabledness check nor the commutativity check. This is because they are
essentially requests from the same node, and therefore each request disables the
other. In this case, it would not make any difference what the range of the index
variable cl was, since the rules do not count the range in any manner, and only
refer to state variables that are directly indexed over cl, which we have already
instantiated to a particular value. Therefore, for these particular rules, it is
sufficient to check independence for a particular instance, to be able to conclude
that for every instance of the parameterized system, instantiations of these rules
with the same index value will never be independent. Now consider the case of the
two rules with different values for the parameter cl. In this case, the rules involve
entirely disjoint sets of state variables, and hence the rules are independent.
However, this is true as long as the values of cl are different for the two rules,
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irrespective of what particular values they are. Therefore, here too, it is sufficient
to check independence for one instance, and infer independence for all instances.

In the following sections, we develop a framework for describing independence
among rules of parameterized systems, and show that under certain assumptions,
independence of rules is indeed unaffected by parameter size. Section 3.1 intro-
duces the notation and definitions used, and in Section 3.2 we state and prove
the main theorem that relates independence of rules across different instances of
a parameterized system.

3.1 Notations and Definitions

Recall that a scalarset variable in Murphi is a variable such that the system
description is completely symmetric with respect to permutations of the elements
of the domain of the scalarset variable. A parameterized Murphi specification,
with a single scalarset parameter N , can be described in terms of a first order
language over the set of variables of the specification. Following Pnueli et al’s
notion of bounded data systems [18], we partition the set of variables into three
broad classes, as follows:

– V1 = {x1, x2, . . . xa} where xi is interpreted over B, the boolean domain, and
a ∈ N, the set of natural numbers.

– V2 = {y1, y2, . . . yb} where each yi is a scalarset variable interpreted over the
integer subrange [1 . . .N ], and b ∈ N.

– V3 = {ar1, ar2, . . . arc} where each ari is an array with index type [1 . . .N ],
each array’s cell type is interpreted over B, and c ∈ N.

The terms of the language are the boolean constants True and False, vari-
ables of type V1 or V2, and array references of the form ari[yj ], where yj ∈ V2
and ari ∈ V3. The valid atomic formulas of our language are partitioned into
the set of ordinary atomic formulas O and quantified atomic formulas Q, where:
O = {xi | xi ∈ V1} ∪ {ari[yj] | ari ∈ V3, yj ∈ V2} ∪ {yi = yj | yi, yj ∈ V2},
and Q = {∀x ∈ 1 . . .N.ari[x] | ari ∈ V3} ∪ {∀x ∈ 1 . . .N.¬ari[x] | ari ∈ V3}
∪ {∃x ∈ 1 . . . N.ari[x] | ari ∈ V3} ∪ {∃x ∈ 1 . . .N.¬ari[x] | ari ∈ V3}. The
set of formulas is then the standard extension of the atomic formulas using the
boolean connectives ∧, ∨ and ¬. We say that the set of all formulas over a set
of variables V , L(V) is the language of our logic.

A Murphi system description, which consists of a set of variable declarations,
and a set of transitions (rules) defined as guard/action pairs, can be mapped into
our first order language by mapping the variable definitions to the variables of
the language, mapping guards to formulas of the language, and mapping actions
as sets of substitutions of variables by terms or formulas of the language. Since
the variables in V1 and V3 are of boolean type, they can be assigned any valid
formula of the language, because Murphi allows arbitrary boolean expressions as
rvalues in assignments. For a complete description of the allowed substitutions,
and the corresponding Murphi constructs, see [2]. A state of a Murphi system
can thus be seen as an interpretation of the variables of the logic. We denote
the set of all states of a system as S, and, in particular, the set of all states of a
parameterized system with parameter N as S(N).
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In bounded data systems, both states (interpretations) and the satisfaction
of formulas, are symmetric with respect to any permutation of the indices [18].
This is enforced in Murphi syntax by declaring the parameter range to be a
scalarset type.

3.2 The Carry over Theorem

We now show that in the above setting, we can compute the dependence relation
between transitions for all parameter sizes N > 1, by computing the relation for
a small size, calculated as described below.

Enabledness: Given a pair of rules 〈g1, a1〉 and 〈g2, a2〉, they satisfy the en-
abledness condition when:

g1(s) ∧ g2(s) ⇒ g1(a2(s)) ∧ g2(a1(s)) (3.1)

is valid over S(N), the set of all states (interpretations) s, g1(s) denotes the
evaluation of the formula g1, given the interpretation s of the variables, a1(s)
(with a slight abuse of notation) denotes the application of the substitutions
represented by a1 to the variables, followed by an evaluation of the resulting
terms over the interpretation s. Similarly for g2 and a2.

We would like to find a bound, N̂ , such that 3.1 is valid over S(N) for all N ,
N > 1 iff it is valid over S(N) for all N , 1 < N ≤ N̂ . To arrive at such a bound,
we proceed as follows: in formula 3.1, we push negations inside atomic formu-
las of type Q (ie, a formula ¬∀i.arj [i] is converted into the equivalent formula
∃i.¬arj [i], and so on for every atomic formula of type Q). Let the cardinality of
the set V2 be k, the number of existentially quantified atomic formulas of type
Q in a guard gi be ei, and the number of universally quantified atomic formulas
of type Q in gi be ui.

Theorem 1. 3.1 is valid over S(N) for all N , N > 1 iff it is valid over S(N)
for all N , 1 < N ≤ N̂ , where N̂ = k + 2 × (max{e1, e2} + max{u1, u2}).

Proof (sketch)2: To show this, it is sufficient to show that the negation of 3.1:

g1(s) ∧ g2(s) ∧ (¬g1(a2(s)) ∨ ¬g2(a1(s))) (3.2)

is satisfiable for N > N̂ iff it is satisfiable for some N , 1 < N ≤ N̂ . To show this,
moreover, it is sufficient to show that if 3.2 is satisfiable over S(N), for N > N̂ ,
it is satisfiable over S(N̂).

By counting the number of existentially quantified atomic formulas of the
forms ∃x.ari[x] or ∃x.¬ari[x] in 3.2, which can be equivalently written as ari[p]
and ¬ari[q] respectively, where p and q are fresh variables of type V2, we can
show that the total number of variables of type V2 is bounded by N̂ . Thus,
given an interpretation s over S(N) that satisfies 3.2, it can assign at most
α ≤ N̂ different values to these variables. Without loss of generality, assume
2 The proof is very similar to, and follows closely, the proof of Claim 3 in

[18, Section 4].
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that these values are v1 < v2 < · · · < vα. Since the system is symmetric, there is
a permutation over the indices [1..N ] that maps vk to k, for every k ∈ 1..α. Let s̃
be the state derived from s by applying this permutation-induced transformation
to the set of variables above. Clearly, s̃ is also an interpretation that satisfies 3.2.
To construct the interpretation ŝ ∈ N̂ that satisfies 3.2, we let s̃ and ŝ agree
on the interpretation of the variables in V1 and V2. For the remaining variables
ar1, ar2, . . . arc, we let s̃ and ŝ agree on the values of all ari[k], for k ≤ α.
After replacing existentials by new variables, the formula 3.2 is a formula over
the variables in V1 and V2, and universally (over the parameter size) quantified
expressions over V3. Since s̃ and ŝ agree on the interpretation of all of the above,
ŝ satisfies 3.2 over S(N̂). By similar reasoning, we can also compute bounds on
the commutativity condition. Taken together, these provide an overall bound on
the size of the system for which independence checks need to be performed for
partial order reduction.

4 Transaction-Based Priorities for Ample Set
Construction

For many of the kinds of systems that are typically described using the rule-
based paradigm (e.g., protocols of various types), it is often the case that the
system proceeds along fairly sequential paths called transactions. For example,
consider a typical directory-based cache coherence protocol. Most activities in
such protocols begin with the cache controller making a request for a line. This
request travels to the directory controller which typically evicts other caches
from the sharing group by sending invalidations. Thereafter, the directory con-
troller sends the line back to the requesting node. Modeled in Murphi, we can say
that (i) this whole activity consists of a transaction (refer to [16] for somewhat
related notions of a transaction), and (ii) there are Murphi rules that begin a
transaction, there are rules that are somewhere in the “middle” of transactions
(e.g., invalidation rules), and finally there are rules that end transactions. One
can often obtain the situation of a rule—whether it is at the beginning, mid-
dle, or end of a transaction—through concrete execution on small instances of
the protocol. Most designers also clearly know the situation of rules within a
transaction. Clearly, a transaction can involve actions of multiple components
(the requesting node and the directory controller in the example above). This
is a slightly different notion than the notion of a transaction as a sequence of
actions within a single thread (or component), as presented in [19], for example.
In any case, we weigh each rule as follows: (i) rules that begin transactions are
weighed “low,” (ii) the rules that end transactions are weighed “high,” (iii) rules
that are in the middle of transactions are weighed “medium.” We need not be
exact in how we assign numeric values to “low, medium, and high.” Users can
be completely wrong in these weight assignments—the only consequence being
poorer ample sets but never incorrect execution.

Given a set of weights for the transitions, we use them to pick the seed tran-
sition during ample set computations. Enabled transitions that have the highest



Exploiting Symmetry and Transactions for Partial Order Reduction 263

priority are picked as seed transitions at each state. Effectively, this results in
“scheduling” ongoing transactions with greater priority, and postponing the start
of new transactions as long as possible. Note that this is completely sound, be-
cause we will only be able to postpone the start of a new transaction as long as
the transition that starts it is independent of transitions that belong to the on-
going transaction. The results of applying this heuristic while computing ample
sets are discussed in Section 6.

5 Strengthening Guards

It is often the case that a pair of rules is independent at all reachable states, but
dependent at some unreachable state(s). Our analysis, as described so far, marks
such rules dependent, since it starts from an entirely general symbolic state. To
be able to use the independence of these rules during partial order reduction, a
simple idea is to find potential strengthenings for guards, that don’t change the
enabledness of rules in reachable states, and extend the independence of rules to
all states, both reachable and unreachable. This is useful while checking the C1
condition, since the fewer the dependent transitions, the smaller the likelihood
of there being disabled transitions dependent on the ample set.

To actually discover these strengthenings requires a deep understanding of
the protocol involved, and we discuss some intuitions in Section 6.

Once we have strengthened the guards of transitions, it is necessary to show
that these strengthenings are sound, and do indeed preserve the semantics of
the original transitions. We now show that it is sufficient to model check the
strengthened system with a modified property, to be able to prove the soundness
of the strengthenings.

Since Murphi transitions are guard action pairs (gi, ai), strengthening the
guards corresponds to adding predicates pi to the guards of transitions ti. Define
the strengthening operator Θ over transitions such that:

Θ(〈gi, ai〉) =
{
〈gi ∧ pi, ai〉 if ti is strengthened
〈gi, ai〉 otherwise

We extend Θ to apply to runs σ = 〈s1, t1, s2, . . . , sk, . . . 〉 so that Θ(σ) results in
the sequence (not necessarily a run) 〈s1, Θ(t1), s2, . . . , sk, . . . 〉. Let the original
system be F , and the modified system F ′. Note that both systems have the same
set of states, and the same initial state predicate I. Assume that the property to
be verified of the original system was P . We model check the new system with
the property P ∧ Str, where:

Str = (gi1 → pi1) ∧ (gi2 → pi2) ∧ . . . ∧ (gik
→ pik

)

gi1 . . . gik
are the k guards of the original system that have been strengthened

with the predicates pi1 . . . pik
.

Definition. A run σ = 〈s1, s2, . . . , 〉 of a system satisfies an invariant property
P , written as σ |= P , iff the property is true at every state in the run.
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Definition. A system M satisfies an invariant property P , written as M |= P ,
iff every run of the system satisfies the property.

Theorem 2.
F ′ |= P ∧ Str ⇒ F |= P

Proof: By contradiction. Assume that the antecedent of the theorem is true, and
assume that there is a run r = 〈s1, t1, s2, t2, . . . , sm, . . . 〉 of F that does not sat-
isfy the property P . Without loss of generality, we assume that s1, s2, . . . sm−1 |=
P , and sm �|= P . If Θ(r) is a run of F ′, sm |= P ∧Str, which implies that sm |= P ,
contradicting our assumption. Therefore, assume that Θ(r) is not a run of F ′.
Then, there is a tk, such that Θ(tk) is not enabled at sk, and Θ(〈s1, t1, s2, . . . sk〉)
is a valid prefix of a run of F ′, such that s1, s2, . . . sk |= P ∧Str. Since r is a run
of F , tk is enabled at sk.

Case 1: Θ(tk) = 〈gk, ak〉. In this case, since Θ(tk) is not enabled at sk, this
implies that sk �|= gk. But we know that tk is enabled at sk. That is, sk |= gk,
leading to a contradiction.

Case 2: Θ(tk) = 〈gk ∧ pk, ak〉. In this case, we have sk �|= gk ∧ pk. However,
we know that sk |= gk. Also, sk |= P ∧ Str. That is, sk |= gk → pk. Therefore,
sk |= gk ∧ pk, leading to a contradiction.

Thus, in every case, we arrive at a contradiction, and hence, the theorem is
true, and, by model checking the strengthened system for the property P ∧Str,
we can prove that the strengthenings of the guards are sound.

If the model check fails, on the other hand, we have to manually examine
the error trail to determine whether the property failed, or whether one of the
strengthenings does not hold, and rerun the model check after making the nec-
essary changes, in the latter case.

6 Experimental Results, and Analysis

We have run POeM on a number of examples of different sizes, and Table 1
shows our overall results on some mutual exclusion algorithms and a cache co-
herence protocol. The experiments in Table 1 were performed with Murphi’s
symmetry reduction turned on, whenever scalar sets were employed. This is safe
because symmetry and partial order reductions are orthogonal to each other,
and can be combined for safety property verification[7]. Guard strengthening
and transaction-based weights were not employed in these examples, and are dis-
cussed later. In the table, the columns under “Unreduced” represent the number
of states explored, and the time taken for the verification to complete, with-
out any partial order reduction. The columns under “Static PO” represent the
same figures for the case where a static, syntax-based analysis was used to deter-
mine the independence relation (this was our initial prototype version of POeM
before we moved on to the use of SAT for independence computation). The
columns under “Symbolic PO” represent the figures for POeM. The final col-
umn, “Analysis Time”, is the time taken by POeM’s symbolic evaluation based
module to compute the independence relation. In cases where we’ve used the
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Table 1. Performance of partial order reduction algorithm

Example Unreduced Static PO Symbolic PO Analysis
States Time States Time States Time Time

Bakery 157 0.1 157 0.1 119 0.1 8.9
Burns 82010 1.83 82010 3.65 69815 11.67 52.9
Dekker 100 0.13 100 0.13 90 0.13 11.6
Dijkstra6 11664 0.57 11664 0.88 4900 1.17 17.9
Dijkstra8 139968 4.32 139968 8.81 33286 8.98 CO

Dijkstra10 >1.5M >1000.0 >1.5M >1000.0 202248 82.6 CO

DP6 1152 0.32 1152 0.36 90 0.31 0
DP10 125952 7.44 125952 7.86 823 0.48 0
DP14 >1.0M >800.0 >1.0M >800.0 7395 2.6 0
Peterson2 26 0.15 26 0.15 24 0.15 4.6
Peterson4 22281 0.3 22281 0.53 14721 0.58 CO

German6 7378 1.31 7378 1.36 2542 0.83 32.4
German8 42717 14.6 42717 15.23 10827 4.6 CO

German10 193790 127.24 193790 131.83 36606 24.91 CO

Leader1 683 0.32 683 0.36 21 0.10 8.5
Leader2 12651 0.20 12651 0.33 12651 0.33 4.6

carry over theorem of Section 3, the entry for higher instances is marked CO,
and represents the fact that the results were carried over from the analysis of
the smallest instance in the table. The experiments were run on a dual processor
Xeon 3GHz machine with 1GB of RAM. As can be seen, POeM is most effective
on large examples, where the overhead of performing the symbolic analysis, and
computing an ample set at each state, is outweighed by the savings that result
from a far fewer number of states being explored.

Assessing Guard Strengthenings: We experimented with guard strengthenings on
the German protocol, as well as the Stanford FLASH [13] cache coherence proto-
col, and these results are now discussed. The German cache coherence protocol
is a directory-based protocol for maintaining coherence among shared memory
multiprocessors, proposed by Steven German [8] The Murphi description of the
protocol only models a single address/cache line, and a parameterized number
of processors.

Our technique for generating predicates to strengthen guards is to first run
POeM directly on the protocol, and analyze the resulting dependency matrix.
For pairs of rules that POeM marks dependent, we examine the test(s) that
failed (enabledness, dependency, or both), and try to reason about predicates
that, if added, would make the rules independent, without violating the proper-
ties we wish the protocol to hold. If we are able to come up with such predicates,
we add them to the guard, and add the corresponding implication predicate to
the invariant to be proved.

Run directly on the German protocol, POeM concludes that the rule “home
sends invalidate message” is dependent on the rule “home sends reply to client -
exclusive”.
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The guards for the two rules are:

rule "home sends invalidate message"
(home_current_command = req_shared & home_exclusive_granted
| home_current_command = req_exclusive)
& home_invalidate_list[cl]
& channel2_4[cl] = empty

rule "home sends reply to client -- exclusive"
home_current_command = req_exclusive
& client_requests[home_current_client]
& forall i: client do home_sharer_list[i] = false endforall
& channel2_4[home_current_client] = empty

It is evident that the two rules ought never to be enabled together, and therefore,
marked independent. However, it is not apparent what predicate is to be added
to enforce this. It is clear from the existing guards that, if the rules are to
be simultaneously enabled, home_current_command = req_exclusive must be
true. Looking at the rule “home picks new request”, which sets this variable, leads
to the realization that, in the case of a request for exclusive access, the home
node copies the home_sharer_list to the home_invalidate_list. The protocol
then clears an entry in the invalidate list once it sends out the invalidate message
to that client, and clears the entry in the sharer list once the client has sent the
acknowledgment to the invalidate. This means that, at the time the home node
sends out an invalidate message to a client, that client must be on the sharer and
invalidate lists. Therefore, we can add the predicate home_sharer_list[cl] to
the guard for the rule “home sends invalidate message”:

rule "home sends invalidate message"
(home_current_command = req_shared & home_exclusive_granted
| home_current_command = req_exclusive)
& home_invalidate_list[cl]
& channel2_4[cl] = empty
& home_sharer_list[cl]

Similar reasoning is used to strengthen the guards of other pairs of rules that
we determine to have been falsely marked dependent by POeM.

As is evident, the ability to effectively strengthen the guards of a given pro-
tocol depends on a good understanding of the workings of the protocol, which
we possess for the German protocol. From a practical perspective, however, in-
dustrial design groups possess a deep understanding of their protocols, and we
have reasons to believe that designers will, when presented with false entries in
the independence matrix, be able to identify guard strengthenings as discussed
above. Our results on the FLASH coherence protocol further demonstrate the
effectiveness of this approach, yielding over 60% reduction for 4 nodes, although,
with over 30 rules, and many auxiliary variables, it is a much more complex pro-
tocol and guard strengthenings were only performed for the most obvious cases.
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Table 2. Advantages of Guard Strengthening

Example Without Strengthening With Strengthening
Unreduced POeM Unreduced POeM

States Time States Time States Time States Time
German6 13270 2.68 4485 1.29 7378 1.42 2542 0.74
German8 81413 30.28 20104 8.87 42717 14.5 10827 4.56
German10 378236 260.96 69613 49.04 193790 126.6 36606 24.72
FLASH 6336 0.78 6336 1.46 2888 0.46 2146 0.64

Table 2 shows the results of running the protocols with and without strengthened
guards.

Assessing Transaction-Based Priorities: The next set of experiments run on the
German protocol were aimed at testing the significance of user-defined priorities
for rules, over the automatically computed priorities, which are based on the
number of variable references. Table 3 shows the comparison between the two
methods of assigning priorities to rules. Lower weights translate into a higher
priority for the rule to be picked as the seed transition.

The user defined priorities were assigned in such a fashion as to give higher
priority to rules that complete transactions, the transactions in this case being
the requests for exclusive or shared access to a line. Rules that represent the
intermediate steps of a transaction were given medium priority, and rules that
represent the start of a transaction were given the lowest priority.

In the case of the German protocol, user-defined priorities gave a distinct
performance boost to POeM, resulting in upto an 80% reduction over the
already reduced state space explored by POeM using the regular variable
reference count based priorities. This confirms our intuitions that user-defined
priorities are a good way to select the seed transition around which to form
ample sets.

Recently [4], we have built an experimental variant of Murphi that records the
sequence of rules fired with respect to user-identified request rules and completion
rules. From this experimental version of Murphi, we observe that rule weights
can be computed with reasonable accuracy based on concrete executions of small
instances of the protocol.

Table 3. Transaction-based priorities vs. Variable reference based priorities
(G=German)

Ex Without Strengthening With Strengthening
Trans. based wts Var based wts Trans. based wts Var based wts
States Time States Time States Time States Time

G6 2521 0.66 4485 1.29 1166 0.36 2542 0.74
G8 8098 2.75 20104 8.87 2851 0.94 10827 4.56
G10 20968 10.52 69613 49.04 5890 2.57 36606 24.72
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6.1 Protocols That Yield Low Reductions with POeM

Our partial order reduction algorithm yields large reductions on many complex
protocols, but also fails to yield significant reductions on some others. An exam-
ple in Table 1 is the leader election protocol from [5](Leader2). This example is
of a network of nodes in a ring topology running an algorithm to determine the
node with the largest id. The algorithm involves exchanging messages through
buffers, and POeM’s independence computation, relying on the primary and al-
ternate checks, concludes that all the message-passing transitions of each node
are dependent on those of all of the other nodes, although each node’s transi-
tions only depend on its neighbor’s transitions (since neighboring nodes read and
write a common message buffer). This indicates that rule-based systems might
benefit from making buffers/queues first-class data structures in their language,
allowing partial order reduction algorithms to take advantage of the orchestrated
fashion in which these buffers operate. This example also lacks scalarset symme-
try, and it might be possible to improve our algorithm by examining other kinds
of specialized symmetries, such as the ring symmetry of this example. On the
other hand, POeM is very successful on the other leader election example stud-
ied (Leader1), since that example employs a single-cell buffer, and thus forces
the nodes to proceed in lock-step fashion. This also makes the case that the
specification style can often influence the amount of reduction achievable.

7 Conclusions and Future Directions

In this paper, we have described in detail a number of heuristics and tech-
niques to further improve the efficiency of partial order reduction algorithms
for rule-based systems, and demonstrated the advantages of our heuristics over
conventional, static analysis based partial order reduction algorithms for these
types of systems.

An interesting experiment to perform might be to replace our SAT-based
backend with a more powerful solver such as CVC [21], which combines deci-
sion procedures for fragments of arithmetic, theories for uninterpreted functions,
etc. It might also be possible to automatically generate candidate predicates to
strengthen guards, based on the satisfying assignment returned by the SAT
solver/decision procedure, in case two rules are found to be dependent.
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APPENDIX

A Sufficient Conditions for Ample Set Construction

Adapted from [5, Chapter 10], the sufficient conditions C0-C3 for constructing
valid ample sets are:

– C0 : ∀s ∈ S : ample(s) = φ ⇔ enabled(s) = φ. An ample set is empty if
and only if there are no enabled transitions.
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– C1: ∀s ∈ S : ∀t1, t2 ∈ T : t1 ∈ ample(s) ∧ t2 /∈ ample(s) ∧ dep(t1, t2) ⇒
∀p ∈ P|s : ∃t3 ∈ ample(s) : before(p, t3, t2) Along every path in the full
state graph that starts at state s, the following must hold - if there is an
enabled transition that depends on a transition in the ample set, it is not
taken before some transition from the ample set is taken.

– C2 : ∀s ∈ S : ample(s) �= enabled(s) ⇒ ∀t ∈ ample(s) : invπ(t). If a state
is not fully expanded, then every transition in the ample set is invisible.

– C33 : ∀s ∈ S : ample(s) �= enabled(s) ⇒ ∃t ∈ ample(s) : t(s) /∈
onstack(s) There is no transition t that is enabled in a state that is part of
a cycle, and is not in the ample set of any state in that cycle.

3 For a proof of the sufficiency of this form of the condition see [11].
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Abstract. An important component of partial-order based reduction al-
gorithms is the condition that prevents action ignoring, commonly known
as the cycle proviso. In this paper we give a new version of this proviso
that is applicable to a general search algorithm skeleton also known as the
General State Expanding Algorithm (GSEA). GSEA maintains a set of
open (visited but not expanded) states from which states are iteratively
selected for exploration and moved to a closed set of states (visited and
expanded). Depending on the open set data structure used, GSEA can be
instantiated as depth-first, breadth-first, or a directed search algorithm.
The proviso is characterized by reference to the open and closed set of
states in GSEA. As a result the proviso can be computed in an efficient
manner during the search based on local information. We implemented
partial-order reduction for GSEA based on our proposed proviso in the
tool HSF-SPIN, which is an extension of the model checker SPIN for di-
rected model checking. We evaluate the state space reduction achieved by
partial-order reduction according to the proviso that we propose by com-
paring it on a set of benchmark problems to other reduction approaches.
We also compare the use of breadth-first search and A*, two algorithms
ensuring that counterexamples of minimal length will be found, together
with the proviso that we propose.

1 Introduction

Partial-Order Reduction (POR) [4, 8, 22, 23, 25, 26] is one of the main techniques
used to tackle the state explosion problem in model checking. An important
component of partial-order based reduction algorithms is the condition that
prevents action ignoring, commonly known as the cycle proviso. In this paper
we give a new version of this proviso that is applicable to a general state search
algorithm skeleton also known as the General State Exploring Algorithm (GSEA)
which maintains a set of open (visited but not expanded) states from which states

A. Valmari (Ed.): SPIN 2006, LNCS 3925, pp. 271–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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are iteratively selected for exploration and moved to a closed set of states (visited
and expanded).

Unlike the full state space exploration, POR expands only a subset of the
enabled actions in a given state, called the ample set. The actions outside the
ample set are temporarily ignored. However, if one is not careful, an action could
be permanently ignored along some cycle in the reduced state space. Consider
a state s that appears in both the full and the reduced state spaces. An action
a is (permanently) ignored if it is executed in s in the full state space, but it is
ignored along all execution sequences starting at s in the reduced state space.

To prevent this, we require that the following condition (which we call open
set proviso) is satisfied: at least one state s which is directly reachable via an
action from the ample set has not been visited before or it is in the set of open
states. Otherwise the ample set consists of all enabled transitions. For simplic-
ity, in the remainder of this introductory section we treat the newly generated
unvisited states also as open states since they will eventually be entered in the
open set.

The intuition behind the open set proviso is that the ignoring problem is
postponed until state s is expanded later. As the ignored actions are independent
of the actions in the ample set, they stay enabled in the open state. Thus, they
will be either selected in the ample set of s and as such executed, or they will be
delayed for another open state reachable from s. Under the assumption that the
GSEA algorithm terminates one can show that this postponement will eventually
stop. This is because the set of open states will eventually become empty.

Such a proviso is a generalization of the cycle proviso for partial-order re-
duction with breadth-first search (BFS) [2] implemented in the model checker
SPIN. The BFS POR proviso in turn was inspired by the algorithm presented
in [1] for the application of POR in symbolic state space exploration.

Being characterized by means of the open set of states in GSEA, the open
set proviso can be computed in an efficient manner during the search based on
local information, i.e., information about the currently expanded state and its
successors. Further, depending on the data structure which is used to represent
the open set, GSEA can be instantiated as a depth-first, a breadth-first, or a
directed search algorithm. As it was shown in [5], the latter can significantly
improve the error-detection capabilities of explicit state model checking.

We implemented partial-order reduction for GSEA based on our proposed
proviso in the tool HSF-SPIN, which is an extension of the model checker SPIN
for directed model checking. We evaluate the state space reduction achieved by
partial-order reduction according to the proviso that we propose by comparing
it on a set of benchmark problems to other reduction approaches.

With the development of a proviso that is applicable to BFS as well as A*,
which is an optimal directed heuristic search algorithm if an admissible heuristics
is used, we can experimentally address a further relevant issue. When checking
safety properties both BFS and A* are capable of returning counterexamples
of minimal length if an erroneous state is found in the state space. The usage
of BFS without partial order reduction is often impossible due to the memory
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needs of this algorithm. But this obstacle to its application is partially remedied
by the availability of an efficient partial order reduction, which this paper (as
well as some previous papers) offers. It will hence be interesting to see how both
optimal algorithms perform when used to find errors with the proposed proviso.

Related Work. The POR algorithm of [1] is for symbolic state space exploration
and as such it is based on BFS. Unlike the POR version of GSEA (and the
open set proviso, as a part of it) which is presented in this paper, the algorithm
proposed in [1] is not dealing with reopening of states. Further, the practical
side of the theory in [1] hinges on the concept of history function which assigns
to each state a set of states.

The states in the history can be seen as potentially “dangerous” because
they can lead to a cycle. By requiring that at least one action leads outside
the “dangerous” set, i.e., at least one successor state does not belong to the
history, one ensures that at least one action from the ample set does not close a
cycle. (Therefore, the temporarily ignored transitions can safely be postponed.)
In order to be useful in practice, there should be a simple criterion to define
such history sets. For example, in the context of explicit state model checking,
assuming depth-first search (DFS) exploration, the history set of the currently
expanded state s consists of the states which are on the DFS stack. If at least one
of the successors is not on the DFS stack we are sure that at least one transition
from the ample set does not close a cycle.

To avoid cycles, the definition of history requires that for no two states s, s′,
s belongs to the history of s′ and, vice versa, s′ is in the history of s. Because of
the reopening of states that GSEA performs, a direct application of the history
concept is not possible since the set of open states does not satisfy such a re-
quirement. Our approach, however, results in an efficiently checkable condition
which is still expressed in terms of the set of open (closed) states.

In [5] a simple proviso is proposed. It requires that at least one newly gener-
ated state is not one of the already visited states. As the set of open states is a
subset of the visited states, the open set proviso is weaker than the visited pro-
viso. As a result reductions which are refuted by the visited proviso are allowed
by the open set proviso. Our experiments show that this leads to significantly
better results than the ones presented in [5].

In another work [14], the authors exploit the fact that the concurrent systems
we work with are defined by a parallel composition of sequential processes. This
leads to the formulation of a static version of the cycle proviso. This variant of
the proviso does not depend on the search status but on information regarding
control flow cycles of component processes that is gathered at compile-time. This
static proviso is in general much stronger than the previously discussed provisos.
Nonetheless, as our experiments showed, in practice it tends to be less efficient
than the open set proviso that we introduce in this paper.

Alternatives for the cycle proviso are presented in [17] and [16]. Both refer-
ences assume DFS exploration of the state space and are therefore not directly
applicable to our setting. Shortly before the submission of this paper we were
made aware of an adaptation for breadth-first search of the algorithm in [17]
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described in [20]. The very short description of the POR algorithm in [20] does
not provide sufficient detail to allow for a meaningful comparison with our ap-
proach. However, reconciling this approach with ours might be an interesting
subject for future research.

Paper Outline. In Section 2 we review the foundations of labeled transition
systems, partial-order reduction and directed model checking. Our approach to-
wards an efficient partial-order reduction for general state space exploring al-
gorithms is introduced in Section 3. We describe our experimental results in
Section 4 and conclude in Section 5.

2 Preliminaries

2.1 Transition Systems

Our approach mainly targets the verification of asynchronous systems where
the global system is constructed as an asynchronous product of a set of local
component processes. We assume an interleaving model of execution. To reason
formally about such systems, we introduce the notion of a labeled transition
system.1

Definition 1 (Labeled transition system). A labeled transition system
(LTS), is a 6-tuple (S, ŝ, A, τ), where S is a finite set of states, ŝ ∈ S is the ini-
tial state, A is a finite set of actions, and τ : S×A → S is a (partial) transition
function.

Let T = (S, ŝ, A, τ) be an LTS. An action a ∈ A is said to be T -enabled in state
s ∈ S, denoted s

a→T iff τ(s, a) is defined. The set of all actions a ∈ A enabled in
state s ∈ S is denoted enabledT (s); that is, for any s ∈ S, enabledT (s) = {a ∈
A | s

a→T }. When the LTS is clear from the context we omit the T subscript. A
state s ∈ S is a deadlock state iff enabled(s) = ∅.

The transition function τ of LTS T induces a set T ⊆ S×A×S of transitions
defined as T = {(s, a, s′) | s, s′ ∈ S∧a ∈ A∧s′ = τ(s, a)}. To improve readability,
we write s

a→ s′ for (s, a, s′) ∈ T . We also say that s′ is a successor of s.
The transition function τ implies that the LTSs are deterministic in the

sense that in a given state s an action a cannot result in more than one state.
However, this is not a restriction from a practical point of view, as we shall
now argue. Note that in practice the labels of the transitions correspond to
program statements (see [11], for instance). Consider first two statements which
are the same but belong to two different processes. As an example, this is the
case if we have two instances of the same statement that belong to different
instances of the same concurrent process (proctype, in SPIN). If the statement
does not change the program (location) counter, then the theoretical condition
1 Labeled Transition Systems with state propositions, like the ones used in this paper,

are sometimes named “Labeled Kripke structures” or “Doubly labeled transition
systems”.
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that τ(s, a) always results in the same state is trivially satisfied. Suppose that in a
given (global) state s the execution of the statement that corresponds to action a
changes the program (location) counter of the process to which it belongs. Then,
since the program counters are part of the state vector, the execution of each
statement results in a different global state. In case we have non-determinism
within the same process, it does not make much sense to have statements with
the same name within the same non-deterministic choice. For instance, consider
the following code in Promela, the input language of Spin:

if
:: a=1
:: a=1
fi

Depending on the implementation, in such a case each statement would ei-
ther have a unique identifier or the statements would automatically be merged
into one statement, such as this would be done in Spin. A similar argument
can be made regarding non-determinism in other contexts, like process algebra.
As an example consider non-observable actions obtained as a result of hiding.
Translated into Promela they become skip actions that only affect the program
counter. An analogous argument as above also applies to this case.

An execution sequence of an LTS T is a (finite) sequence of consecutive
transitions in T . For any natural number n ∈ IN, states si ∈ S and actions
ai ∈ A with i ∈ IN and 0 ≤ i < n, s0

a0→ s1
a1→ . . . sn−1

an−1→ sn is called an
execution sequence of length n of T iff si

ai→ si+1 for all i ∈ IN with 0 ≤ i < n.
State sn is said to be reachable from state s0. A state is said to be reachable in
T iff it is reachable from ŝ.

2.2 Partial-Order Reduction

The basic idea of state space reduction is to restrict the part of the state space
of a concurrent system that is explored during verification in such a way that all
properties of interest are preserved. Partial-order reduction exploits the indepen-
dence of properties from the many possible interleavings of the individual actions
of a concurrent system. In our experimental context, actions correspond to state-
ments of Promela (the model specification language of SPIN and HSF-SPIN).

To be practically useful, a reduction of the state space must be achieved
on-the-fly, during the construction and traversal of the state space. This means
that it must be decided per state which transitions, and hence which subsequent
states, must be considered. Let T = (S, ŝ, A, τ) be some LTS.

Definition 2 (Reduction). For any reduction function r : S → 2A, we define
the (partial-order) reduction of T with respect to r as the smallest LTS Tr =
(Sr, ŝr, A, τr) satisfying the following conditions:

– Sr ⊆ S, ŝr = ŝ
– for every s ∈ Sr and a ∈ r(s) such that τ(s, a) is defined, τr(s, a) = τ(s, a).
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Note that the definition implies that, for every s ∈ Sr and a ∈ A, if τr(s, a)
is defined, then also τ(s, a) is defined and τr(s, a) = τ(s, a). Formally, if the
function r(s) is fixed in advance, the reduced LTS Tr is independent of the
particular algorithm with which it is generated. In practice r(s) is computed on-
the-fly during the generation of Tr, so the latter may depend on the algorithm.

Not all reductions preserve all properties of interest. Depending on the prop-
erties that a reduction must preserve, we have to define additional restrictions
on r. To this end, we need to formally capture the notion of independence. Ac-
tions occurring in different processes can easily influence each other, for example,
when they access global variables. The following notion of independence defines
the absence of such mutual influence: two independent actions neither disable
nor enable one another and they are commutative.

Definition 3 (Independence of actions). Actions a, b ∈ A with a �= b are
independent in a given state s ∈ S iff the following holds:

– if a ∈ enabled(s) then b ∈ enabled(s) iff b ∈ enabled(τ(s, a)),
– if b ∈ enabled(s) then a ∈ enabled(s) iff a ∈ enabled(τ(s, b)), and
– τ(τ(s, a), b) = τ(τ(s, b), a)

Actions that are not independent are called dependent. The following conditions
are sufficient for preservation of deadlocks [8, 9, 19, 24]:

– C0a: if a ∈ r(s) then a ∈ enabled(s)
– C0b: r(s) = ∅ iff enabled(s) = ∅.
– C1 (persistence): For any s ∈ S and execution sequence s0

a0→ s1
a1→ . . .

an−1→
sn of length n ∈ IN \ {0} such that s0 = s and ai �∈ r(s) for all i ∈ IN with
0 ≤ i < n, it holds: action an−1 is independent in sn−1 with all actions in
r(s).

In this paper we focus on subclasses of safety properties that include Promela
assertions [11] (annotations stating the truth of a predicate). (See also the com-
ments in the paragraph after Theorem 1 below.)

The main obstacle in the verification of safety properties is the action ignoring
problem which was identified for the first time in [25]. Informally, the ignoring
problem occurs when a reduction of a state space ignores the actions of an entire
process. For instance, if there is a cyclic process in the system which contains
only globally independent actions, i.e., does not interact with the rest of the
system, the reduction algorithm could ignore the rest of the system by choosing
only actions of this process in r(s). An action a is ignored in a state s ∈ Sr

iff a ∈ enabledT (s) and for all s′ which are reachable in Tr from s it holds
a �∈ enabledTr(s′). An action is ignored in Tr iff it is ignored in some state
s ∈ Sr. So, the following condition prevents action ignoring:

– C2ai: For every s ∈ Sr and every a ∈ A, if a ∈ enabledT (s), then there
exists an execution sequence s0

a0→ s1
a1→ . . . sn−1

an−1→ sn such that s = s0
and which is in the reduced state space Tr (i.e., si ∈ Sr for 1 ≤ i ≤ n and
ai ∈ r(si) for 0 ≤ i ≤ n − 1) and a ∈ r(sn).
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In other words, each delayed transition in s must be eventually executed in a
state reachable from s.

Condition C2ai implies that each execution sequence (of the original state
space) σ starting in s has a representative in the reduced state space. A represen-
tative violates the safety property iff the sequence in the non-reduced state space
violates the property (e.g. [1]). If we see the execution sequence as a sequence of
actions, this representative is a permutation of an action sequence obtained by
extending σ with another (possibly empty) action sequence σ′ from the original
state space. More formally, the claim is given by the following theorem:

Theorem 1. Given an LTS T and a reduction function r that satisfies C0a,
C0b, C1, and C2ai, let s0

a0→ s1
a1→ . . . sn−1

an−1→ sn be a finite execution se-
quence of T , such that s0 ∈ Sr. Then there exists (in T ) an execution se-
quence sn

an→ s1
an+1→ . . . sn+k−1

an+k−1→ sn+k, (k ≥ 0), such that in Tr there
exists an execution sequence s0

aπ(0)→ s′1
aπ(1)→ . . . s′n+k−1

aπ(n+k−1)→ sn+k, where
aπ(0), aπ(1), . . . , aπ(n+k−1) is a permutation of a0, a1, . . . , an+k−1.

Proof of the above theorem can be found in [25]. Analogous results were proven
previously using different versions of the condition that prevents action ignor-
ing (e.g. [8]). Theorem 1 is a meeting point of almost all existing POR-like
techniques. It implies preservation of various classes of safety properties (for in-
stance, see [26] for an overview). Among them are also Promela assertions that
can be fitted in a straightforward way in one of the existing approaches like
assertions in the sense of [8, 12], fact transitions of [25], or local properties of [1].

2.3 Directed Model Checking

Explicit-state model checking is primarily state space search. For memory effi-
ciency reasons, the most commonly used algorithms are DFS for safety property
verification and nested DFS for liveness property checking. The verification of
safety properties can be performed with BFS, which is rather memory inefficient
in comparison with DFS. To be able to reconstruct paths to states, BFS needs
to store a predecessor link with each state. In addition, the search horizon in
BFS grows exponentially with the depth while only linearly in DFS. See [15] for
further details. However, BFS guarantees to find an error on an optimally short
path. Since short paths into property violating states are helpful in debugging,
the authors of [5] suggested the use of heuristically guided search algorithms
such as best-first search (BF) and A* in the state space search, an approach to
which they refer to as directed model checking (DMC). Such algorithms hold
the potential of locating safety property violating states on short or even opti-
mally short error paths while requiring less states to be stored than BFS. They
accomplish this by functions that heuristically assign to each state a value repre-
senting the desirability of exploring it. Typical heuristics, for instance, estimate
the distance of a state to the set of error states. The heuristic function takes
structural properties of the state space as well as properties of the requirements
specification into account.
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(1) procedure GSEA(s)
(2) Closed ← ∅; Open ← {s}
(3) while not Open.empty() do
(4) u ← Open.extract(); Closed.insert(u);
(5) if goal(u) then return solution;
(6) for each a ∈ enabledT do
(7) v ← τ (u, a); process(v);
(8) if reopenOK(v) then Closed .delete(v);
(9) if v �∈ Closed and v �∈ Open then Open.insert(v);

Fig. 1. A general state expanding search algorithm

In this paper we base the construction of a cycle proviso for partial-order
reduction on a general search algorithm skeleton that we refer to as general
state expanding algorithm (GSEA), c.f. Figure 1. This algorithm divides the
set of system states S into three mutually disjoint sets: the set Open of visited
but not yet expanded states, the set Closed of visited and expanded states,
and the set of unvisited states. The algorithm performs the search by extracting
states from Open and moving them into Closed. States extracted from Open
are expanded, i.e., the respective successor states are generated. If a successor of
an expanded state is neither in Open nor in Closed it is added to Open. Based
on the processing done by function reopenOK (line 8) a state can be reopened,
i.e., after it is deleted from Closed (line 8) it is reinserted in Open (line 9).
DFS (respectively, BFS) can be defined as an instance of the general algorithm
presented above, that do not perform reopening of states and where Open is
implemented as a stack (resp., queue). Notice that GSEA is not guaranteed to
terminate. The termination depends on the state reopening policy, i.e., on the
function reopenOK. However, in the sequel we consider only instances for which
the termination is guaranteed.

Successful heuristic search algorithms include the non-optimal algorithm BF
and the optimal algorithm A* [10]. We present a variant of A* suitable to verify
safety properties in Figure 2. It can also be considered a variant of GSEA if one
interprets Open as a priority queue in which the priority of a state v is deter-
mined by a value f . The f–value for a state v is computed as the sum of i) the
length v.g of the currently shortest path from the start state to v and ii) the esti-
mated distance h(v) from v to a goal state. A* can perform a reopening of states.
This means that it can move states from Closed to Open when they are reached
along a path that is shorter than any path that they were reached on earlier. It is
necessary to reopen states in order to guarantee that the algorithm will find the
shortest path to the goal state when non-monotone heuristics are used. Monotone
heuristics satisfy the property that for each state u and each successor v of u the
difference between h(u) and h(v) is less than or equal to the cost of the transi-
tion that goes from u to v. Note that we usually consider that each transition
has a unit cost of 1, corresponding to the step distance between adjacent states.
However, our algorithmic framework can easily handle non unit costs as well. If
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( 1) procedure A*(s)
( 2) begin
( 3) Closed ← ∅; Open ← ∅; s.f ← h(s); s.g ← 0; Open.insert(s);
( 4) while not Open.empty() do
( 5) u ← Open.extractmin(); Closed.insert(u);
( 6) if goal(u) then return solution;
( 7) for each a ∈ enabledT (u) do
( 8) v ← τ (u, a); v.g ← u.g + cost(a); f ′ ← v.g + h(v);
( 9) if v ∈ Open then
(10) if (f ′ < v.f) then v.f ← f ′;
(11) else if v ∈ Closed then
(12) if (f ′ < v.f) then v.f ← f ′; Closed.delete(v); Open.insert(v);
(13) else v.f ← f ′; Open.insert(v);

Fig. 2. A* search algorithm

non-monotone heuristics are applied, the number of reopenings can be exponen-
tial in the size of the state space. However, even if many of the heuristics that we
use cannot be proven to be monotone, experimental experience has shown that
in practical protocol validation examples states are very rarely reopened [6]. An
interesting property of A* is that if h is a lower bound of the distance to a goal
state, then A* will always return the shortest path to a goal state [18].

A key challenge in directed model checking is determining appropriate heuris-
tics. In precursory work, heuristics based on the structure of the property speci-
fication, in particular on the syntactic structure of LTL formulae, on local state
machine distances as well as property specific heuristics, for instance for dead-
lock detection, were developed and experimentally evaluated. For more informa-
tion on directed model checking, as well as the tool HSF-SPIN we refer to the
papers [5, 6].

When applying partial-order reduction in the context of directed model
checking one is faced with two challenges: a) The pruning of a part of the state
space leads to suboptimality of the combined method since optimal error traces
may be cut away by the reduction. Experimental results [6] show that in prac-
tical examples the sub-optimal solutions are very close to the optimal solutions,
if a discrepancy can be detected at all. b) Algorithms such as BF and A* lack
a search stack, hence a stack based action prevention condition, such as it is
used when implementing partial-order reduction for DFS based state space ex-
ploration, cannot be used. The authors of [6] therefore applied two independent
over-approximations of the cycle proviso that do not rely on the presence of a
search stack, c.f. our discussion in Section 3.

3 Action Ignoring Prevention Condition for General
Space Exploration

Condition C2ai from Section 2.2 is stated as a global property of the state
space and as such it is expensive to check. Therefore, for practical purposes it
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is important to have a possibly stronger condition (which implies C2ai), but
which can be locally checked in an efficient way. For particular state expanding
strategies such stronger versions of the ignoring condition exist. For instance
for DFS there exists a simple locally checkable condition. For each expanded
state s in the reduced state space we require that there exists at least one
action a in the reduced action set r(s) and a state s′ ∈ Sr such that s

a→ s′

and s′ is not on the DFS stack. In other words, at least one transition from
r(s) must lead to a transition outside the stack, i.e., must not close a cycle.
Otherwise, r(s) = enabledT (s). An analogous version of this condition exists
also for BFS [2].

The partial-order reduction version of the general state expanding algo-
rithm (POR GSEA) differs from the original of Figure 1 in line 6 only, where
enabledT (u) is substituted by r(u). We now put the emphasis on the new version
of the action ignoring prevention condition.

The conditions that ensure persistence of r, C0a, C0b and C1, do not de-
pend on the search order, as is argued in [5]. Consequently, they may remain
unchanged. Only the condition for ignoring prevention should be adjusted to
comply with the general search.

To prevent action ignoring we require that for the currently expanded state
s at least one action of r(s) leads to a state s′ that will be processed later by
the algorithm. This means that s′ is unvisited or it has been visited already
but it is in the Open set. The intuition is that the solution to the ignoring
problem is postponed until state s′ is expanded later. The actions which are
temporarily ignored in s remain enabled in s′. This is because by the persis-
tence condition they are independent from the actions in r(s) and therefore they
cannot be disabled. Under the assumption that the algorithm terminates, i.e.,
that the Open set eventually becomes empty, such a postponement will even-
tually stop. This is because we will eventually arrive at a state for which all
transitions lead to states outside Open. For such a state our condition does
not hold and therefore the set of explored actions cannot be reduced since
at that point we are guaranteed that all possibly postponed actions will be
explored.

So, we require that the reduced set (reduction function) r(u), besides condi-
tions C0a, C0b and C1, has to satisfy for each state u ∈ Sr immediately before
its use in the algorithm (the line in POR GSEA corresponding to line 6 of the
original algorithm depicted in Figure 1) also the following condition:

– C2c (closed): There exists at least one action a ∈ r(u) and a state v ∈ Sr

such that u
a→ v and v �∈ Closed . Otherwise, r(u) = enabledT (u).

We show below that C2c implies that the ignoring prevention condition C2ai
is satisfied too by the reduced state space, which further entails (via Theorem 1)
preservation of safety properties by the POR GSEA algorithm.

Lemma 1. Let T = (S, ŝ, A, τ) be an LTS with a reduction function r that
satisfies conditions C0a, C0b, C1, and C2c. Further, let us assume that the POR
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GSEA algorithm terminates when applied on the initial state ŝ and produces the
reduction Tr. Then r satisfies the ignoring prevention condition C2ai.

Proof. The proof is by induction on the (decreasing) order in which the states
are removed from Open. As in general each state can be reinserted in Open
several times, we establish the ordering based on the last removal of the state.
To this end we assign to each state a number n ∈ IN, which we call the removal
order of the state. The state which is removed as the very last is assigned the
number |Sr| − 1, where |Sr| is the number of states in Sr, while the one which
is removed first is assigned 0. Such an ordering is always possible because of
the assumption that POR GSEA terminates. As a consequence, the set Open
eventually becomes empty and there exists some state s which is removed last
from the Open set.

Base case: Let s be the state with the highest removal order, i.e., s is removed
as the last from Open. Consider the very last removal of s from Open. Since Open
is empty, all successors of s must be in Closed . (If they were new they would
have been inserted in Open which is a contradiction.) So, by condition C2c,
r(s) = enabledT (s), i.e., all enabled actions will be explored. The prevention
condition C2ai holds trivially.

Inductive step: Let s be the state with removal order n. We assume that for
each state s′′ with removal order greater than n, i.e., which is removed for the
last time from Open after s is removed for the last time, the following holds: for
each a �∈ r(s′′), there exists a state s′ reachable via an execution sequence in the
reduced state space such that a ∈ r(s′). Consider the very last removal of s from
Open. If r(s) = enabledT (s) C2ai holds trivially. So, let us assume that r(s) is a
proper subset of enabledT (s). By condition C2c there exists at least one action
b ∈ r(s) and a state s′′ ∈ Sr such that s

b→ s′′ and s′′ �∈ Closed . This implies that
s′′ is either a new unvisited state and it will be inserted in Open or it is already
in Open. As by our assumption s is already removed (before it is expanded) for
the last time from Open (line 4 of the POR GSEA algorithm) we are sure that
s′′ will be removed from Open for the last time after s. Let a be an action which
is not in r(s), i.e., it is postponed. By the persistence condition C1 actions a and
b are independent and therefore a is enabled in s′′. By the induction hypothesis
there exists a state s′ reachable from s′′ via a transition sequence in the reduced
state space. The concatenation of s

a→ s′′ and the execution sequence from s′′

to s′ gives the desired execution sequence from s to s′. ��
After proving the termination of the concrete version of the POR GSEA algo-
rithm, its correctness follows by Lemma 1 and further by Theorem 1. Evidently,
termination of the concrete version of the POR GSEA algorithm depends on the
reopening strategy. Practical strategies, however, guarantee termination. For a
deeper discusion, proofs of termination of A∗ and similar directed search algo-
rithms discussed in Section 2.3 can be found in Section 3.1.2 of [21]. As the POR
versions of those algorithms work on a subset of the original state space it is triv-
ial to adapt the argument from [21] to the case of the state space reduced by
partial-order reduction. Another argument for the termination of the instances
of (POR) GSEA is given in [3].
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In full analogy with the DFS case [22, 13], accompanied with some additional
restrictions on r [7, 23], a stronger version of the open set proviso that preserves
LTL−X and CTL∗

−X(e.g. [4]) can be defined:

– C2cl: (closed liveness) For all actions a ∈ r(s) and states s′ ∈ Sr such that
s

a→ s′, s′ �∈ Closed .

We refer the reader to [3] for further details.
We now turn to the problem of finding efficiently computable cycle provisos

for A*. Using the observation made in [14] to prevent global cycles one has
to break all local cycles of the involved concurrent processes, in [6] a static
POR method was adapted to the A* based directed model checking setting. The
method relies on marking one action in every local control cycle as “sticky”. It
is then enforced that no sticky action is allowed in an ample set of a state if the
state is not fully expanded. The resulting proviso c2s is defined as the following
condition (for the details we refer to the literature) on the reduced set r(s) of a
state s state being expanded.

– C2s (static): There exists no sticky action a ∈ r(s) such that s
a→ s′. Other-

wise, r(s) = enabledT (s).

A second idea proposed in [6] was to enforce breaking cycles by requiring
that at least one transition in the ample set does not lead to a previously visited
state, which lead to the following condition:

– C2v (visited): There exists at least one action a ∈ r(s) and a state s′ ∈ Sr

such that s
a→ s′ and s′ �∈ Closed ∪Open. Otherwise, r(s) = enabledT (s).

It is worth noting that our proviso is better than the visited proviso described
in the previous section. This is simply because C2c trivially implies C2v. In the
experimental section we will show that, in practice, C2c performs significantly
better than C2v.

For safety properties it was shown that C2s and C2v entail the original
cycle proviso [6]. Further, while strictly weaker than condition C2ai, experimen-
tal results show that still significant reductions could be achieved with these
conditions.

4 Experiments

This section presents experimental results that evaluate the performance of the
proposed proviso. We implemented the approach described in our paper in the
tool HSF-SPIN [5] and performed various experiments in which we compare our
proposed proviso with the performance of other, previously proposed provisos
for BFS and A*. Experiments were performed under Linux on a PC with an
AMD Athlon 1.8 Ghz processor. We use various models in our experiments: A
leader election algorithm (leader) that solves the problem of finding a leader in
a ring topology, a model of a concurrent program that solves the stable marriage



Partial-Order Reduction for General State Exploring Algorithms 283

problem (marriers(n)), the CORBA GIOP protocol (giop(n,m)) which is a
key component of the OMG’s Common Object Request Broker Architecture
(CORBA) specification, and the preliminary design of a Plain Old Telephony
System (pots). A description of these models can be found in [5]. Note that
these models have been used in benchmarking partial order reductions before,
and that the GIOP and POTS models have real-life system complexities. For
parameterized scalable models we indicate the instantiated parameters using
brackets after the name of the protocol.

Our first set of experiments is devoted to a specific case of the GSEA, namely
BFS. None of the previous works on BFS with PO [2, 5] presents a comparison
with the newly proposed proviso (C2c). The results of [5], which do not consider
C2c, show that none between the visited proviso (C2v) [5] and the static proviso
(C2s) [14] is better than the other. In contrast, the results of [2] do not con-
sider C2s but show that an instance of C2c for BFS is significantly better than
C2v. The main question to investigate is therefore how C2c performs in compar-
ison to C2s. Table 1 depicts results obtained by completely exploring the state
space of some models using BFS as search algorithm in combination with various
reduction methods: no partial-order reduction at all (no), no action ignoring pre-
vention (C2i), C2v, C2s and C2c. Note that C2i leads to an unsound reduction.
We introduce it only in order to assess the other provisos in terms of the number
of ample sets that they refuse. For each experiment we present the size of the
state space (s), the amount of memory required (m), and the running time (r).

The first thing we observe is that C2c performs better than C2v. This, for
instance, becomes especially obvious in the case of the giop model where C2c
explores about three times less states. Regarding the comparison with the C2s
approach, the C2c based reduction performs better in all cases. Here, the leader
model is the most significant example since C2c explores almost four times less
states. Finally, by comparing the colums C2c and C2i we observe that C2c

Table 1. Completely exploring state spaces with BFS and several reduction methods

marriers(3)
BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2c

s 96,295 29,501 56,345 57,067 29,501
m 12 MB 6 MB 8 MB 8 MB 6 MB
r 1.13 s 0.21 s 0.58 s 0.54 s 0.23 s

leader(6)
BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2c

s 445,776 3,160 5,209 11,921 3,160
m 147 MB 3 MB 4 MB 6 MB 3 MB
r 34.48 s 0.07 s 0.18 s 0.19 0.08 s

giop(2,1)
BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2c

s 664,376 65,964 209,382 231,102 66,160
m 384 MB 39 MB 122 MB 134 MB 39 MB
r 16.42 s 1.12 s 4.76 s 4.44 s 1.23 s
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refuses ample sets in the giop model only. Note that when the exploration with
C2c results in equal state spaces as when ignoring the proviso, there is a small
difference in the running time that can be traced to the overhead caused by
computing the proviso.

We continue the evaluation of our C2c proviso in a different setting, namely
where the goal is error detection and directed model checking algorithms like A*
are used. We also performed additional experiment with other DMC algorithms
like best-first search leading to similar results. The results of [5] show no clear
winner between C2v and the C2s. Hence, the first question to answer is whether
C2c outperforms C2s. Second we would like to find out to what degree C2c is
actually superior to C2v.

To answer this last question we basically extend the results presented in [5]
with C2c. Table 2 depicts the results. As in the previous set of experiments,
C2c performs significantly better than C2v. Consider, for instance, the models
marriers and giop, where the number of states explored with C2c is only about
half the number explored with C2v. On the other hand, there is no clear winner
between C2c and C2s approach. For instance, the best reduction is achieved with
C2s in model marriers and with C2c in model giop. In the rest of the models
both provisos work equally well.

By comparing the two previous sets of experiments we observe the following
phenomenon: in the marriers model, algorithm BFS with C2c explores as many
states as BFS with C2i (Table 1), while A* with C2c explores almost twice as
many states as A* with C2i (Table 2). In other words, the C2c proviso is refuting

Table 2. Finding a safety violation with A* and BFS with several reduction methods

marriers(4)
A*+no A*+C2i A*+C2v A*+C2s A*+C2c BFS+C2c

s 225,404 37,220 100,278 37,220 58,500 155,894
m 31 MB 7 MB 15 MB 7 MB 6 MB 22 MB
r 5.15 s 0.31 s 2.99s 0.36 s 0.73 s 7.17 s

pots
A*+no A*+C2i A*+C2v A*+C2s A*+C2c BFS+C2c

s 6,654 5,429 5,574 5,429 5,429 22,786
m 5 MB 4 MB 4 MB 4 MB 4 MB 12 MB
r 0.18 s 0.15 s 0.15 s 0.15 s 0.15 s 0.78 s

leader(8)
A*+no A*+C2i A*+C2v A*+C2s A*+C2c BFS+C2c

s 558,214 104 104 104 104 128
m 265 MB 2 MB 2 MB 2 MB 2 MB 2 MB
r 30.54 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s

giop(3,1)
A*+no A*+C2i A*+C2v A*+C2s A*+C2c BFS+C2c

s 485,907 90,412 314,964 191,805 117,846 120,132
m 291 MB 55 MB 189 MB 116 MB 72 MB 73 MB
r 20.09 s 2.82 s 12.41 s 6.60 s 3.98 s 2,52
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ample sets when the search algorithm is A* but not when it is BFS. What
happens is that the new proviso, as well as the rest of the provisos, depends on
the order in which states are explored. This phenomenon can be illustrated by
a simple example. Assume the following state space:

s0
c ��
d

�����
� s1

a ��

b��

s2

b��
s3

a �� s4

Suppose that ŝ = s0 and that actions a,b are unconditionally independent
and that we use BFS with our proviso to explore the state space. First, state s0
is extracted from the open set and its successors s1, s3 are inserted into Open
(we assume that no reduction is possible at s0). Assume that the order in which
they are inserted is s1 first and then s3. At the next iteration of BFS, state s1 is
selected for expansion. Now, {b} is selected as ample set since it satisfies all the
conditions. In the last step state s4 is explored. The algorithm, hence, explores
all states but s2.

Consider now that s3 is inserted in Open first and s1 second. Now, state s3 is
extracted from the Open set and s4 is inserted in it. In the next step, state s2
is selected for expansion, but this time set {b} is refused by C2c since state s3 is
no more in the open set. Thus, the search is forced to visit state s4. In sum, the
whole state space is visited.

We have performed some experiments in which the exhaustive exploration is
performed randomly. This was done by using the A* algorithm and a random
heuristic function. The result leads to larger state spaces than with BFS. At this
point an interesting question arises. While previous work presents the benefits
of using directed search algorithms over BFS, can BFS when used with C2c take
advantage of the exploration order phenomenon so as to become more mem-
ory efficient than A* with C2c? This is particularly relevant since partial-order
reduction holds the potential of containing the state space explosion that BFS
is particularly vulnerable to. To answer this question we included experiments
with BFS and C2c in Table 2. With the C2c proviso A* explores less states
than BFS with C2c. While in the pots and marriers models the improvement
is significant, in giop the small difference together with the overhead introduced
by heuristics leads to slightly longer running times for A*.

5 Conclusions

In this paper we presented a partial-order reduction for general state exploring
algorithms. The main novelty in the algorithm lies in the condition for avoiding
action ignoring, which we call open set proviso, which is basically a generaliza-
tion of the queue proviso proposed for SPIN’s BFS based partial-order reduction
in [2]. During the state space exploration this condition can be checked locally
and in an efficient way. We implemented the open set proviso for some directed
model checking algorithms which are special instances of the general search algo-
rithm. The experimental results show that the new proviso leads to a significant
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performance improvement of the directed model checking algorithms in compari-
son to previously known provisos. The experiments also showed that A* together
with the open list proviso is performing superior in terms of explored states and
memory consuption over BFS with partial-order reduction and this new proviso.

We notice that the efficiency of the proviso can depend on the order in which
the actions in the reduced state set are selected. In addition, further experiments
we have performed evidence that when there are various valid ample sets the
choice amongst them influcences size of the reduced state space. It could be
interesting to see if this can be exploited to further improve POR algorithms. In
particular, we propose to investigate whether heuristics, possibly exploiting the
property being verified, can be defined to select amongst different prossibleample
sets in order to improve efficiency of the reduction. Another interesting topic for
future work will be to apply the ideas of this paper in the realm of symbolic
model checking, for instance, for the verification of liveness properties.
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Abstract. We present a model checking tool based on game semantics
and CSP for verifying safety properties of software, such as assertion
violations or array-out-of-bounds errors. The tool implements a data-
abstraction refinement procedure applicable to open programs with infi-
nite integer types. The procedure is guaranteed to terminate for unsafe
inputs.

Keywords: software model checking, abstraction refinement, game
semantics, CSP, FDR.

1 Introduction

The traditional approach to building models of software is based on represen-
tations of program state and the way it changes in the course of execution. A
different approach to constructing models of software is by looking at the ways
in which a term can observably interact with its context. This modelling tech-
nique, known as game semantics, has been shown to provide useful algorithms
for software model checking [1]. In this framework, computation is seen as a game
between two players, the environment and the program, and the model of a pro-
gram is given as a strategy for the second player. Strategies can be then given
concrete representations using various automata or process theoretic formalisms,
thus providing direct support for model checking.

This approach has several benefits compared with the state-based approach.
First, it can be applied to open program fragments with higher-order procedures.
Second, game semantics is defined recursively on syntax, therefore the model of
a term is constructed from the models of its subterms, using a notion of strategy
composition. Third, the generated models are fully abstract, i.e., two terms have
the same models if and only if they cannot be distinguished with respect to
operational tests such as abnormal termination in any program context. Finally,
game models are often much smaller than state-based models because details of
local-state manipulation are hidden during strategy composition.

The traditional, state-based, approach to software model checking has been
applied successfully to verifying realistic industrial software. At the heart of
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many successful tools such as SLAM [2] and BLAST [6] are algorithms based on
abstract-check-refine loops [3]. Recently, it has been shown how counterexample-
guided refinement ideas can be adapted to the setting of game-semantic mod-
els [5]. However, implementing the procedure in [5] is non-trivial because the
semi-algorithm, as described, is highly inefficient.

In this paper, we describe GameChecker, a tool which implements effi-
ciently an abstraction refinement procedure for checking whether a program
fragment is unsafe, i.e. it may execute the designated unsafe command abort.
Using this special command, we can easily perform various code-level checks for
errors such as buffer overruns or assertion violations. Semantically, this corre-
sponds to reachability, in the model, of the designated unsafe move abort.

GameChecker adds abstraction annotations to the source code, to approx-
imate infinite integer data types by partitionings. Any partitioning consists of
finitely many partitions, which are called abstracted integers. Any abstracted
integer is thus a set of integers. Terms which use abstracted rather than actual
integers are called abstracted terms. Operationally, abstracted terms behave just
like their concrete counterparts, but first they nondeterministically instantiate
any abstracted integer argument a by choosing nondeterministically some con-
crete integer n ∈ a, then abstract the concrete integer result n′ to the partition
a′ ( n′ to which it belongs. As shown in [5], this is a conservative approximation.
By quotienting over abstracted integers, the models become finite and can be
model-checked.

Within GameChecker, an abstracted term is compiled into a process in
the CSP process algebra (e.g. [7]), whose finite-traces set represents the quo-
tiented game-semantic model of the term. The resulting process is then verified
for safety using the FDR refinement checker, which is based on explicit state
enumeration.1 If no counterexample is found by FDR, the procedure terminates
with answer SAFE. Otherwise, the counterexamples are analysed and classified
as either genuine or (potentially) spurious. If genuine counterexamples exist the
program is deemed UNSAFE, otherwise the spurious counterexamples are used
to refine the abstractions, by splitting some of their partitions. The procedure
is then repeated on the refined term.

The abstraction refinement procedure is a semi-algorithm: it terminates and
reports a genuine error trace for unsafe terms, but it may diverge for safe terms.

GameChecker is available from:
http://www.dcs.warwick.ac.uk/~aleks/gamechecker.htm.

2 The Programming Language and Its Game Semantics

The input is any program fragment of an expressive programming language
combining imperative features, locally-scoped variables and (call-by-name) pro-
cedures. The actual language on which GameChecker works also incorporates
abstraction annotations, which are managed automatically by the tool. The data
1 FDR is a commercial product of Formal Systems (Europe) Ltd. It is available free

of charge for academic use. See http://www.fsel.com



290 A. Dimovski, D.R. Ghica, and R. Lazić

types are booleans and abstracted integers (τ ::= bool | intπ). The phrase types
are types of expressions, variables and commands (σ ::= exp τ | var τ | com),
and 1st-order functions types (θ ::= σ | σ → θ).

The abstractions π range over computable finite partitionings of the inte-
gers Z. The tool currently uses the following abstractions:

[ ] = {Z} [n, m] = {<n, {n}, {n + 1}, . . . , {0}, . . . , {m − 1}, {m}, >m}

where <n = {n′ | n′ < n} and >n = {n′ | n′ > n}. Instead of {n}, we may
write just n. Abstractions are refined by splitting abstract values: [ ] is refined
to [0, 0] by splitting Z; [n, m] to [n − 1, m] by splitting <n, or to [n, m + 1] by
splitting >m.

We write Γ ) M : θ to indicate that term M with free identifiers in Γ has
type θ. (The typing rules can be found in [5].) A context (i.e. term-with-hole) is
safe if it does not contain the abort command. A term is unsafe if there exists
a closed program formed from a safe context and the term, which may execute
abort. Otherwise, we say that a term is safe.

GameChecker includes a compiler from any abstracted term Γ ) M : θ to
a CSP process [[Γ ) M : θ]] whose set of finite traces traces[[Γ ) M : θ]] is the
set of all plays of the game strategy for the term. Those processes are defined
compositionally, by induction on the structure of terms (see [4]).

The abstraction refinement procedure described in [5] requires models con-
sisting of fully revealed plays, i.e., models in which semantic composition of
strategies does not involve hiding of the moves involved in composition. The
fully revealed plays allow us to discern between genuine and spurious coun-
terexamples by identifying the precise subterms that produce abstracted moves.
However, fully revealed models are much larger and therefore impractical. In
GameChecker, this is overcome as follows: first we use special marker moves
to identify points in plays at which abstraction gives rise to nondeterminism,
then we use a special debugging feature of FDR that lets us reveal only those
plays which are counterexamples rather than full models.

Nondeterminism due to abstraction happens when an arithmetic/logic op-
eration produces more than one result. In such an instance, the operation nec-
essarily has at least one abstracted integer operand which is not a singleton,
i.e. which abstracts more than one integer. The game strategy for the operation
then performs a special marker move nd .a, where a is such an operand. Those
moves are propagated through strategy compositions, so for any term Γ ) M : θ,
they appear in traces[[Γ ) M : θ]] at the points where nondeterminism due to
abstraction occurs.

Example 1. Consider [[x : var int[0,4] ) x :=x + 1 : com]]. If the abstract value
<0 is read from x, x + 1 can evaluate to both 0 and <0. The following trace
corresponds to choosing the result 0: run readx <0x nd .(<0) write(0)x okx ok.
The move nd .(<0) records the non-singleton abstracted integer operand <0.

FDR offers a number of state-space reduction algorithms which preserve finite-
trace sets, and which are thus compositional. The processes representing the
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game strategies are particularly amenable to such reductions, because moves
which are hidden through composition of strategies become internal (τ) process
transitions. The compiler within GameChecker inserts calls to FDR’s state-
space reduction algorithms within the process scripts it outputs.

It was established in [5] that the game semantic models are fully abstract
for the language of concrete and abstracted terms. This result ensures that, for
any term Γ ) M : θ, model-checking the process [[Γ ) M : θ]] for safety (i.e. for
unreachability of the abort event) is equivalent to checking whether Γ ) M : θ
is safe.

3 Abstraction Refinement Procedure

GameChecker checks safety of a given term Γ ) M : θ (with infinite integer
data types) by performing a sequence of iterations. The initial abstracted term
Γ0 ) M0 : θ0 uses the coarsest abstraction Z for any free identifier or local
variable, and the abstraction [0, n] or [n, 0] for constants n. Other abstractions
(such as those for integer expression subterms) are determined from the former
by inference.

Each iteration consists of model checking (by calling the FDR tool), slicing,
and refining abstractions. Only abstractions which occur in types of free identi-
fiers or local variables are explicitly refined, and others are obtained by inference.
That yields a refined abstracted term Γi+1 ) Mi+1 : θi+1, which is passed to the
next iteration.

The following are the steps of any iteration. If t is a trace which contains
at least one special move marking a nondeterminism, let pick(t) = a, where
nd .a is the first such move.2 For ordering non-singleton abstracted integers, we
use a bijection r to the natural numbers: r(Z) = 0, r(<n) = 2|n| + 2, and
r(>n) = 2n + 1. This has the property that r(a) < r(a′) whenever a′ ⊆ a.

1. If [[Γi ) Mi : θi]] \ {|nd |} is unsafe, terminate with answer UNSAFE.
2. If [[Γi ) Mi : θi]] is safe, terminate with answer SAFE.
3. Among the counterexamples (i.e. traces of [[Γi ) Mi : θi]] which end with

abort), select t such that r(pick(t)) is minimal.
4. Apply the FDR trace-reveal feature to t, obtaining a fully revealed trace s.
5. Call a slicing procedure to determine a set S of all occurences of non-singleton

abstracted integers which were involved in causing the first nd .a move in s.
6. For any data type intπ of a free identifier or a local variable which corresponds

to an occurence of an abstracted integer b in S, refine π by splitting b.

Steps 2 and 3 are implemented as follows. The process [[Γi ) Mi : θi]] is
composed in parallel with an auxiliary process Rank of pick which, once the first
move of the form nd .a has occured, keeps in its state the value r(a). FDR is called
to model check that parallel composition, and for any reachable state which has
2 This definition of pick(t) is currently implemented, but other definitions are possible.

The crucial property is that, if t is used to refine abstractions, then one of the
refinements will split pick(t).
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an abort transition, to return a trace which reaches it. By step 1, any such trace
must contain an nd .a move. The parallel composition with Rank of pick ensures
that, for any possible value of r(pick(t)) with t a counterexample, at least one
such counterexample is returned by FDR.

Theorem 1. If the abstraction refinement procedure terminates, its answer is
correct. Moreover, it terminates for any unsafe term.

Proof. UNSAFE answers are correct because any trace which contains no special
moves marking nondeterminism corresponds to a concrete trace. Correctness of
SAFE answers is a consequence of the conservativity of abstraction. (See [5].)

Suppose Γ ) M : θ is unsafe. Let u be a fully revealed play of the game
strategy for Γ ) M : θ which ends with abort, and let m be an integer in u with
maximum absolute value. For any non-singleton abstracted integer a, we define
d(a) = 2|m| + 1 − r(a). Then d(a) > 0 whenever |n| ≤ |m| for some n ∈ a.

For any iteration i, let Di be the sum of all positive d(a) as a ranges over the
non-singleton equivalence classes of all abstractions in Γi ) Mi : θi. Steps 3–6
ensure that D0 > D1 > · · ·, so the procedure must terminate. ��

4 Conclusion

This paper presents the first software model checker based on game semantics
and counterexample-guided abstraction refinement. By combining the two the-
ories, it can handle arbitrary open program fragments with infinite integer data
types. The tool is a prototype implementation, which has been tested on a variety
of academic examples.

Possibilities for future work include extensions to programs with concurrency,
recursion and 2nd-order procedures, as well as to abstractions by arbitrary pred-
icates. The goal is a tool which uses game semantics to achieve compositional
verification of practical programs.
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Abstract. jMosel is a tool-set for the analysis and verification of linear
parametric systems in monadic second-order logic on strings. In this
paper we give a short introduction to the underlying concepts, as well as
an overview of the implementation and the usage of jMosel.

1 Introduction

Monadic second-order logic on strings (M2L(Str)) was proposed as an appro-
priate formalism for reasoning about bit vector sequences by A. Church in the
1960’s [3]. It is expressive enough to capture parametric finite-state systems and
it is also decidable, though in non-elementary time. However, many relevant
practical problems have proved to be solvable in reasonable time.

M2L has been used for the specification and verification of classes of para-
metric hardware systems [2, 7, 9] and software systems [8, 11], in which the logic
can serve, for example, as a description language for model-based analysis.

This paper introduces jMosel, a new tool-set for handling M2L(Str) formulas,
i.e. constructing the automata1 representing the desired semantics and providing
the means to further work with them in different contexts.

It is developed as the successor to the MoSeL tool-set from the 1990’s, but
using current technologies like Java and XML. The emphasis is placed on flexibil-
ity, to allow the customisation of many aspects of the tool’s properties. Currently
there are two interfaces to access jMosel’s functionality: a command line tool
and a plugin to the jABC framework [12]. Both versions are presented in this
paper.

2 The jMosel Concept

2.1 Design Principles

jMosel supports flexible adaptation and extension to new input or output for-
malisms, as well as the interchange of many components, including the most
1 The semantics of a jMosel formula is defined via finite-state automata.
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crucial algorithms and libraries. This allows the user to experiment with a great
variety of technologies. The aim is that the best-fitting incarnation of the tool
for a specific application area may be put together at need from the collection
of existing components. The following components can be customised:

BDD libraries: The performance of the operations on BDDs2, which label the
edges of a jMosel automaton, has a great impact on the overall performance of
the compilation process. To encourage the user to compare different implemen-
tations, jMosel already supports the use of the following BDD libraries: CUDD
[15], BuDDy [6], CAL BDD [14], JavaBDD (Java port of BuDDy) [17], JavaBDD
Micro (Java port of BuDDy) [17], JDD [16]. Switching bet-ween these libraries
can be done easily by changing the corresponding lib parameter of the command
line tool.

Algorithms: Even such fundamental compiler parts like the algorithms for
determinisation and minimisation can be easily changed or replaced.

Output formats: The support of various output formats allows the use of
different visualisation tools, like Graphviz or our own jABC libraries for graph
layout and rendering.

2.2 The Syntax

The syntax is given in Fig. 1. It contains the non-terminal symbols F (formula),
T (second-order term3) and A (atomic formula); the start symbol is F.

There are two special second-order variables: empty, which represents the
string only containing 0’s, and all, which represents the string only consisting

T ::= Id | all | empty | union(T,T) | inter(T,T) |
comp(T) | (T)

A ::= sing(T) | ∼sing(T) | subset(T,T) | ∼subset(T,T) |
subseteq(T,T) | ∼subseteq(T,T) | T = T | T ∼= T |
shifteq(T,T) | ∼shifteq(T,T) | T < T | T <= T |
roteq(T,T) | ∼roteq(T,T) |
0 in T | 0 ∼in T | $ in T | $ ∼in T

F ::= true | false | F & F | F | F | F -> F |
F <-> F | F ^ F | Id(T,...,T) | ∼Id(T,...,T) |
ex Id,...,Id: F | ∼ex Id,...,Id: F |
"<aut file>"(T,...,T) | ∼"<aut file>"(T,...,T) |
let Id(Id,...,Id) in F | A | (F)

Fig. 1. The syntax of jMosel

2 Binary decision diagrams, see for example [4].
3 Second-order terms can be identified with parametric bit-strings as well as sets.
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of 1’s. Since second-order variables can be identified with sets, the usual set
operations (union, inter, comp) can be applied.

The atomic formula sing(T) specifies a second-order variable T to be sin-
gleton, subset(T,T) and subseteq(T,T) define subset relations between the
two second-order arguments, the formulas T=T, T∼=T, T<T, T<=T allow us to
compare second-order terms as binary numbers, the formulas 0 in T and $ in
T test if the positions 0 (first position) and $ (last position) are elements of
the set of positions denoted by the second-order term T, and shifteq(T,T) and
roteq(T,T) compare two second-order terms after bit-shift and bit-rotation re-
spectively. Every atomic formula has a negated counterpart with a leading ∼.

The set of formulas contains the elementary formulas true and false, the
operations conjunction &, disjunction |, implication ->, equivalence <-> and
exclusive or ^. Furthermore the syntax offers existential quantification, the speci-
fication of user-defined predicates by the let-construct and the reuse of
precomputed automata.

2.3 The Semantics

The jMosel formulas are transformed into complete and deterministic finite-
state automata in such a way that the language recognized by an automaton
corresponds to the interpretation of the represented formula. All automata for
atomic formulas are pre-compiled to accelerate the compilation process.

As an example, Fig. 2 shows the semantics of sing(x). The accepting state
of the automaton can only be reached if the second-order term x contains exactly
one 1-bit.

Fig. 2. Semantics of sing(x)

3 Implementation

jMosel is implemented in Java, for easy maintainance of the code and to make
the tool instantly available on nearly every important hardware and operating
system. Only for the most crucial and time consuming part, the potentially
complex edge labels represented by BDDs, C++ libraries can be referenced, to
ensure fast calculations with minimum overhead. At need, the same mechanism
can be used to access packages written in other languages or in assembler - but
this would then reintroduce platform-dependence.

The architecture of jMosel is shown in Fig. 3. An input formula is parsed
into a syntax tree. The compiler traverses the tree to create the automaton
representing the formula’s semantics, which is finally translated into the desired
output format.
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Fig. 3. The architecture of jMosel

The modular design of jMosel allows the input and ouput mechanisms to be
exchanged or extended easily. Currently two implementations of such interfaces
are available:

The command line tool jMoselC offers text-based input and output of for-
mulas and automata. For visualisation, external tools are supported, e.g.
Graphviz. Figure 4 shows the result of a combined use of jMoselC, Graphviz
and a picture viewer. The automaton represents the semantics of the for-
mula subseteq(x,y) & x∼=empty & y∼=all, which has been entered on
the command line (see the upper left part of the figure).

Fig. 4. Command line tool with Graphviz output
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The jABC plugin enables the user to construct more sophisticated workflows,
that may for example include the graphical construction of formulas with
the Formula Builder plugin [5] and the custom layout of automata. Figure 5
shows an example session during which an automaton has been compiled
and layouted. The corresponding formula let fa(x) = 0 ∼in x | x=all
in fa(x) ^ fa(y) can be seen in the jMosel input field on the left side of
the figure.

Fig. 5. jABC plugin example session

4 Ongoing Work

The main emphasis of the development within the jMosel group is placed on the
following tasks:

– The jETI System [10, 13] will enable jMosel to be remotely executed over
the internet as a WebService.

– An extension of the input logic will contain first-order and bit variables, e.g.
as arguments to quantifiers.

– A new PSL [1] logic layer will offer means for the formulation and verification
of PSL assertions based on regular expressions.

– An exhaustive library of hardware circuits will allow the intuitive description
and verification of parametric hardware systems at register-transfer and gate
level. This approach abstracts from the underlying logic layers and therefore
is accessible for users unfamiliar with M2L(Str).



298 C. Topnik et al.

References

1. Accellera Organization, Inc. Accellera Property Specification Language 1.1 Refer-
ence Manual, 2004.

2. David A. Basin and Nils Klarlund. Hardware Verification using Monadic Second-
Order Logic. In Proc. CAV’95, volume 939 of Lecture Notes in Computer Science,
pages 31–41. Springer Verlag, 1995.

3. Alonzo Church. Logic, arithmetic and automata. In Proc. Intern. Congr. Math.,
pages 23–35. Almqvist and Wiksells, 1963.

4. Rolf Drechsler and Bernd Becker. Binary Decision Diagrams: Theory and Imple-
mentation. Springer Verlag, 1998.

5. S. Jörges, T. Margaria, and B. Steffen. FormulaBuilder: A Tool for Graph-based
Modelling and Generation of Formulae. 2006. To be published in ICSE ’06: Pro-
ceedings of the 28th international conference on Software engineering.

6. Jørn Lind-Nielsen. BuDDy. http://sourceforge.net/projects/buddy.
18. 01. 2006.

7. Tiziana Margaria. Fully Automatic Verification and Error Detection for Parame-
terized Iterative Sequential Circuits. In Proc. TACAS ’96, volume 1055 of Lecture
Notes in Computer Science, pages 258–277. Springer Verlag, 1996.

8. Tiziana Margaria and Michael Mendler. Model-based Automatic Synthesis and
Analysis in Second-Order Monadic Logic. In Proceedings AAS’97, ACM/SIGPLAN
Int. Worksh. on Automated Analysis of Software, pages 99–112, 1997.

9. Tiziana Margaria, Michael Mendler, and Claudia Gsottberger. Modelling and Ver-
ification of Unbounded Length Systolic Arrays in Monadic Second Order Logic. In
Proc. Infinity’98 - Int. Workshop on Infinite State Systems, satellite to ICALP98,
SFB-Bericht 342/09/98A, pages 9–23. TU Munich, 1998.

10. Tiziana Margaria, Ralf Nagel, and Bernhard Steffen. Remote Integration and
Coordination of Verification Tools in jETI. In Proc. ECBS 2005, 12th IEEE Int.
Conf. on the Engineering of Computer Based Systems, pages 431–436. IEEE Com-
puter Soc. Press, 2005.

11. Anders Møller. Program Verification with Monadic Second-Order Logic & Lan-
guages for Web Service Development. Technical report, Brics, Daimi, 2002. PhD
thesis.

12. Ralf Nagel. jABC. http://jabc.cs.uni-dortmund.de. 18. 01. 2006.
13. Ralf Nagel. jETI. http://jeti.cs.uni-dortmund.de. 18. 01. 2006.
14. Rajeev Ranjan. CAL BDD. http://www-cad.eecs.berkeley.edu/Research/cal

bdd/. 18. 01. 2006.
15. Fabio Somenzi. CUDD. http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.

html 18. 01. 2006.
16. Arash Vahidi. JDD. http://javaddlib.sourceforge.net/jdd/index.html.

18. 01. 2006.
17. John Whaley. JavaBDD. http://javabdd.sourceforge.net/ . 18. 01. 2006.



Model Checking Dynamic States in GROOVE

Harmen Kastenberg� and Arend Rensink

Department of Computer Science, University of Twente,
P.O. Box 217, AE 7500, Enschede, The Netherlands

{h.kastenberg, rensink}@cs.utwente.nl

Abstract. Much research has been done in the field of model-checking
complex systems (either hardware or software). Approaches that use ex-
plicit state modelling mostly use bit vectors to represent the states of
such systems. Unfortunately, that kind of representation does not extend
smoothly to systems in which the states contain values from a domain
other than primitive types, such as reference values commonly used in
object-oriented systems.

In this paper we report preliminary results on applying CTL model
checking on state spaces generated using graph transformations. The
states of such state spaces have an internal graph structure which makes
it possible to represent complex system states without the need to know
the exact structure beforehand as when using bit vectors.

1 Introduction

Verifying complex systems is a big field of research. For hardware systems, model
checking techniques have proven to be quite successful. Lately, researchers are
trying to also apply model-checking techniques for the verification of software
systems.

In the Groove-project we focus on the use of model checking techniques for
verifying object-oriented systems, where the states of the system are modelled as
graphs, instead of bit vectors as in most explicit state representing approaches.
We think this approach creates new opportunities to specify and verify systems
in which the states mainly depend on a set of reference values instead of values
of primitive types (with a finite domain) only. Due to frequent (de)allocation
of reference values, the states of such systems are highly dynamic, due to their
variable size. Graphs provide a natural way of representing the states of such
systems and specifying interesting properties.

The state spaces on which we perform the model checking process are gener-
ated from so-called graph production systems using the GROOVE Simulator [9].
This results in a so-called graph transition system. These are then translated to
ordinary Kripke structures after which we are able apply standard CTL model
checking.

� The author is employed in the GROOVE project funded by the Dutch NWO (project
number 612.000.314).
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2 State Space Generation

In our approach we model systems by representing their states as graphs and
their behaviour as graph transformations [13]. In this work, a graph G consists
of a finite set N of nodes and a finite set E ⊆ N × L × N of edges (where L is
a global set of labels). We use G to denote the set of all graphs, ranged over by
G, H . Fig. 2.1 shows an example graph representing a specific state of a circular
buffer containing three cells.1

Fig. 2.1. A circular buffer having 2 filled cells out of 3

The state space representing the entire behaviour of the system can be gen-
erated from a graph production system (GPS), which consists of a graph I rep-
resenting the initial state of the system and a set of graph transformation rules
R. A graph transformation rule specifies how the system evolves when going
from one state to another. A graph transformation rule p ∈ R is identified by
its name (Np ∈ N , where N is a global set of rule names) and consists of a
left-hand-side graph (Lp), a right-hand side graph (Rp), and a set of so-called
negative application conditions (NAC p, which are supergraphs of Lp) [4]. The
application of a graph transformation rule p transforms a graph G, the source
graph, into a graph H , the target graph, by looking for an occurrence of Lp in G
(specified by a graph matching m that cannot be extended to an occurrence of
any graph in NAC p) and then replacing that occurrence with Rp, resulting in H .
Such a rule application is denoted as G −p,m−−→ H . A precise technical specification
of the graph transformation process can be found in [13, 4].

Fig. 2.2 shows three screen-shots from our tool (see below) displaying three
graph transformation rules: put for inserting a newly created object into the
buffer, get for getting an object out of the buffer (and deleting it), and extend
for enlarging the capacity of the buffer with one. Note that these transformation
rules specify the behaviour of a circular buffer. This means that performing a
put and get operation subsequently, moves both the first and the last pointer one
cell further. Performing an equal number of puts and gets (without extending
the buffer) results in isomorphic states (which are identified within the tool).

The different shapes (and colours) of the nodes and edges refer to the different
roles of the elements within the rule. The thin solid elements (black in a coloured

1 In order to improve the readability of the graphs, we show the labels of self-edges as
labels of the corresponding nodes.
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(a) put rule. (b) get rule. (c) extend rule.

Fig. 2.2. Graph transformation rules specifying the behaviour of the circular buffer

print-out) are part of both L and R. They need to be present in the source graph
in order for the rule to apply and will be preserved during transformation. The
thin dashed elements (blue) are also part of L but not of R, and will be removed.
The solid fat gray elements (green) are part of R but not of L and will be created.
The dashed fat gray elements (red) represent the NACs, whose presence in the
source graph prevent the rule from being applied.

Each GPS P = 〈R, I〉 specifies a (possibly infinite) state space which can be
generated by repeatedly applying the graph transformation rules on the states,
starting from the initial state I. This results in a graph transition system (GTS):

Definition 1 (graph transition system). The graph transition system T =
〈S,→, I〉 generated by P = 〈R, I〉 consists of a set S of states, which are actually
graphs (S ⊆ G); a transition relation → ⊆ S × R × [G → G] × S, such that
〈G, p, m, H〉 ∈ → iff there is a rule application G −p,m−−→ H ′ with H ′ isomorphic
to H; and an initial state I ∈ S.

The graph transformation process is implemented in the Groove Simulator [9].
This tool is implemented in Java, and currently consists of 18 packages comprising
approximately 400 classes, and 75,000 lines of code. The tool can handle arbitrary

Fig. 2.3. State space of a circular buffer with capacity extending to 5
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GPSs, but can obviously only generate a finite part of the corresponding graph
transition system. Someperformance figureswere reported in [11]; as an indication,
in its current form the tool can handle up to 200,000 states for average graph size
of 50 nodes. Two intrinsically complex parts of the state space generation are:
finding occurrences of left hand sides, and determining isomorphism of states.

Fig. 2.3 shows a finite part of the graph transition system for the transfor-
mation rules from Fig. 2.2 and the initial graph of Fig. 2.1, where the states are
limited to those where the number of buffer cells is 5. The resulting state space
consists of 126 states and 282 transitions.

3 CTL Model Checking

In the approach reported here, we have chosen to express properties in the
temporal logic CTL [3]. The main reason for choosing CTL and not, for example,
LTL, is the simplicity of the former, both in terms of complexity (the model
checking problem for CTL is well known to be linear in both the size of the state
space and the size of the formula) and in terms of the actual algorithm.

In order to perform model checking on the graph transition systems generated
in the previous section we need to translate them to Kripke structures, which
are defined over a finite set AP of atomic propositions.

Definition 2 (Kripke structure). A Kripke structure K = 〈S,→, I, L〉 con-
sists of a set S of states, a total transition relation → ⊆ S × S, a set I ⊆ S of
initial states, and a labelling function L : S → 2AP , which maps each state to
the subset of atomic propositions holding in that state.

When translating a GTS T to a Kripke structure KT , two issues need to be
taken care of: (1) →T must be made total (if this is not yet the case) and (2)
the labelling function LK must be defined. As atomic propositions we use the
rule names, N . Thus, a GTS T gives rise to a Kripke structure KT such that:

SK = ST

IK = {SI}
→K = {〈G, H〉 | ∃p, m : G −p,m−−→T H} ∪ {〈G, G〉 | �p, m, H : G −p,m−−→T H}

LK(G) = {Np | ∃m, H : G −p,m−−→T H}, for all G ∈ SK

From the construction process described above it becomes clear that the labelling
function of the resulting Kripke structure, in graph transformation terms, actu-
ally maps each state on the set of names of the graph transformation rules that
were applicable in that state. This means that for each transformation rule p,
Lp and NAC p constitute a property of graphs that can be used as an atomic
proposition named Np

2. In the special case where Lp and Rp are identical, the
rule actually specifies a state property instead of a graph transformation, since
such rules have no structural effect on any state.
2 In [10] we show that properties specified this way may correspond precisely to a

certain fragment of First-Order logic.
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Two example properties to check for on the circular buffer example are:
AG(¬gap) (1)

AG(EF(empty)) (2)

Property 1 is a safety property specifying that the buffer may not contain a gap,
which is an empty cell following a non-empty cell that is not the last cell of the
buffer. Fig. 3.1 (a) specifies the gap-proposition in the form of a rule (with identi-
cal left and right hand side). Property 2 is a liveness property specifying that the
state representing the empty buffer must reachable infinitely often. The buffer
is empty when the first cell does not contain a value, as shown in Fig. 3.1 (b).

(a) gap. (b) empty.

Fig. 3.1. Graph structures as properties

It turns out that the system of Fig. 2.3 actually does not satisfy Property 1.
This is because we have not specified the extend-rule correctly: it puts no con-
straints on the places where the buffer may be extended, and hence may well
introduce a gap. After fixing this, the system indeed satisfies both properties.

Results. In order to compare our tool with existing ones, we also implemented
our running example as a (more or less) equivalent SPIN-program [7]. A naive
translation results in a SPIN-program using a bit-array (with the maximum
allowed capacity as its length) storing 1’s (representing full cells) and 0’s (rep-
resenting empty cells). A more sophisticated SPIN-program can use the built-in
channels to store the buffer values. Note that this no longer is a real circular
buffer. In both cases we implement the possible operations as being atomic. In
the naive implementation, the first and last pointer travel along the array result-
ing in many more states. In the sophisticated implementation there is no need
for a first and last pointer.

Statistics about the state spaces generated by the three programs are given
in Table 3.2. In this table we list for each implementation the number states, the
state space generation time (GT) and the memory needed to store the states.
From this table we can conclude that GROOVE cannot compete with SPIN re-
garding time-performance. The main reason for this is because checking for iso-
morphic graphs and constructing the graph matchings is very expensive; indeed,
for the buffer of 200 cells, over 90% of the time is spent in isomorphism checking.
However, isomorphism does result in automatic symmetry reduction, as can be
seen be comparing the numbers of states in the GROOVE and naive SPIN im-
plementations. Concerning memory usage for state storage, both tools perform



304 H. Kastenberg and A. Rensink

Table 3.2. Performance statistics

GROOVE SPIN naive SPIN smart
Max cap. States GT Memory States GT Memory States GT Memory

(s) (MB) (s) (MB) (s) (MB)
25 345 1.5 < 1 5,845 < 1 0.2 345 < 1 < 1
50 1,320 6.9 < 10 44,195 < 1 3.1 1,320 < 1 < 1
100 5,145 60.6 < 20 343,395 < 1 42.6 5,145 < 1 0.6
200 20,295 636.5 < 20 2.7+e6 20 606.3 20,295 < 1 4.5

comparable. From the object-oriented point of view, the example showed that
GROOVE provides a natural way of dealing with reference-pointers, whereas
the encoding in SPIN resorts to built-in static data types.

As mentioned before, we have implemented the standard CTL algorithm
(with backwards state traversal). Currently, the verification process is performed
sequentially after the state space generation. By combining both phases, so called
on-the-fly model checking, we could also run the algorithm on graph production
systems that yield potentially infinite state spaces, and get a result if it can be
computed on a finitely representable fragment of the graph transition system.

4 Conclusion

We have shown how to apply CTL model checking on state spaces generated from
graph production systems. The innovation in this approach lies not in the model
checking itself but in the use of graphs for explicit dynamic state representation,
which, as we have argued before, gives rise to an alternative to bit vectors that
is potentially more flexible. We have shown some statistics on how our tool
performs when compared to SPIN. The choice of CTL is not important in this
respect.

Within the area of software model checking, a large number of other software
verification tools have been developed, e.g. Java PathFinder [5], BLAST [6],
SLAM [1], and MAGIC [2]. The last three focus on the verification of C programs
instead of OO-systems like our tool and Java PathFinder. Representing states as
graphs, instead of using arrays and lists, as is done in Java PathFinder, provides
a more natural way of dealing with reference values, and symmetry reduction
boils down to checking for isomorphic graphs. While Java PathFinder uses the
byte code of a program, we represent the source code as graphs, taking the
abstract syntax of the language as a starting point [8].

In the future we plan to do more experiments using the technique described
in this paper. Next to that, there is a lot of further work to be done on improving
the state space generation part. For one thing, currently no advantage is taken
whatsoever of the potential for partial order reduction. In the running example
of this paper, partial order reduction would already pay off, because the put-
and get-rules are actually provably confluent. Alternatively, in [12] we describe
an abstraction technique for graph transformation that results in smaller (in fact,
finite) state spaces, at the price of false negatives in the model checking phase.
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Păsăreanu, Corina S. 163, 234
Platania, Lorenzo 146
Podelski, Andreas 19

Reif, Wolfgang 219
Rensink, Arend 299

Sawaya, Geoffrey 108
Schmitt, Jonathan 219
Siegle, Markus 89
Steffen, Bernhard 293

Topnik, Christian 293

Visser, Willem 163

Wilhelm, Eva 293
Wolf, Verena 71

Yang, Yu 108


	Frontmatter
	Directed Model Checking
	Large-Scale Directed Model Checking LTL
	Directed Model Checking with Distance-Preserving Abstractions
	Adapting an AI Planning Heuristic for Directed Model Checking
	Larger Automata and Less Work for LTL Model Checking

	Markovian Systems
	{\itshape Don't Know} in Probabilistic Systems
	Symbolic Model Checking of Stochastic Systems: Theory and Implementation

	Distributed Model Checking
	Parallel and Distributed Model Checking in Eddy
	Distributed On-the-Fly Model Checking and Test Case Generation

	Advanced Handling of Data Aspects
	Bounded Model Checking of Software Using SMT Solvers Instead of SAT Solvers
	Symbolic Execution with Abstract Subsumption Checking
	Abstract Matching for Software Model Checking

	Applications
	A Parametric State Space for the Analysis of the Infinite Class of Stop-and-Wait Protocols
	Verification of Medical Guidelines by Model Checking -- A Case Study

	Assume--Guarantee
	Towards a Compositional SPIN

	Partial Order Reduction
	Exploiting Symmetry and Transactions for Partial Order Reduction of Rule Based Specifications
	Partial-Order Reduction for General State Exploring Algorithms

	Tool Demonstrations
	A Counterexample-Guided Refinement Tool for Open Procedural Programs
	jMosel: A Stand-Alone Tool and jABC Plugin for M2L(Str)
	Model Checking Dynamic States in GROOVE

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




