Antti Valmari (Ed.)

Model Checking
Software

13th International SPIN Workshop
Vienna, Austria, March/April 2006
Proceedings

LN
N
o)
o
g
O
P
—l

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3925



Antti Valmari (Ed.)

Model Checking
Software

13th International SPIN Workshop
Vienna, Austria, March 30 — April 1, 2006
Proceedings

@ Springer



Volume Editor

Antti Valmari

Tampere University of Technology
Institute of Software Systems

PO Box 553, 33101 Tampere, Finland
E-mail: antti.valmari @tut.fi

Library of Congress Control Number: 2006922236

CR Subject Classification (1998): F.3, D.2.4, D.3.1, D.2
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-33102-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33102-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11691617 06/3142 543210



Preface

The name “SPIN” refers both to a workshop on model checking and to a famous
model checking tool. The SPIN workshop is an annual forum for practitioners
and researchers interested in state space-based techniques for the validation and
analysis of software and hardware systems, including communication protocols.
It focuses on techniques based on explicit representations of state spaces, as
implemented in the SPIN model checker or other tools, and techniques based
on a combination of explicit representations with other representations. The
SPIN model checker has proven to be particularly suited for the analysis of
concurrent asynchronous systems. The workshop aims to encourage interaction
and exchange of ideas with all related areas in software engineering. To promote
interaction even further, many SPIN workshops have been held in conjunction
with other meetings.

The 13th International SPIN Workshop on Model Checking of Software was
held in Vienna, Austria, co-located with the European Joint Conferences on
Theory and Practice of Software (ETAPS) 2006. The earlier SPIN workshops
were held in Montreal, Canada (1995); Rutgers University, USA (1996); Twente
University, The Netherlands (1997); ENST, Paris, France (1998); Trento, Italy
(1999); Toulouse, France (1999); Stanford University, USA (2000); Toronto,
Canada (2001); Grenoble, France (2002); Portland, Oregon, USA (2003);
Barcelona, Spain (2004); and San Francisco, USA (2005). The proceedings of the
Trento and Toulouse workshops were published together in Springer’s Lecture
Notes in Computer Science volume 1680. From then on, each SPIN proceedings
has been published as an individual LNCS volume.

SPIN 2006 attracted 44 submissions, of which 5 were short tool presenta-
tions and 7 were co-authored by a member of the Program Committee. The
submissions were distributed to Program Committee members for reviewing.
They reviewed the papers either personally or delegated them to sub-reviewers.
The sub-reviewers are listed on page VIII. Each paper received three reviews,
and in one case an additional fourth review was obtained.

Submissions whose reviews were neither overwhelmingly positive nor over-
whelmingly negative were discussed by the Program Committee members. Most
discussions led to a consensus on the fate of the paper. In the few cases where a
disagreement remained to the end, the decision followed the opinion of the major-
ity of the Program Committee members who had participated in the processing
of that submission. All accepted papers had in the end more support (scores
4 and 5) than objection (scores 2, 1 and 0), and no rejected paper had more
support than objection. Program committee members who had co-authored a
submission, or for some other reason declared a conflict with it, were excluded
from all information regarding its processing.
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The Program Committee chose 19 submissions to be presented in the work-
shop and included in the proceedings. Of these, three were short tool presenta-
tions and four were co-authored by a member of the PC.

After processing the submitted papers, the Program Committee invited
Roope Kaivola (Intel Corporation, USA) to give a keynote talk on the verifica-
tion of microprocessors at Intel, and Stefan Edelkamp (Universitdt Dortmund,
Germany) to give a tutorial on directed model checking.

The submission deadline of SPIN 2006 was set quite late, to position it rea-
sonably relative to the submission deadlines of other conferences in the field.
As a consequence, the Program Committee had to work in an unusually short
period of time, perhaps the shortest in the recent history of SPIN. That the
full number of reviews was obtained for each submission is a small miracle. I
am grateful to every member of the Program Committee for their efficient and
excellent work!

In addition to the Program Committee, the help of the SPIN Steering Com-
mittee, and in particular its chair, Pierre Wolper (Université de Liege, Belgium),
was extremely important for the success of the paper selection process. On
the practical side, the OCS Online Conference Service (originally developed by
METAFrame) maintained by Martin Karusseit and Markus Bajohr at the Uni-
versity of Dortmund proved once again very helpful in various stages of the paper
selection procedure. And, of course, without the hard work of local organizers
there would not have been any workshop — our thanks to Jens Knoop, Andreas
Krall, and their team.

January 2006 Antti Valmari
Program Chair
SPIN 2006
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Large-Scale Directed Model Checking LTL

Stefan Edelkamp and Shahid Jabbar

University of Dortmund,
Otto-Hahn Strafle 14
{stefan.edelkamp, shahid.jabbar}@cs.uni-dortmund.de

Abstract. To analyze larger models for explicit-state model checking,
directed model checking applies error-guided search, external model check-
ing uses secondary storage media, and distributed model checking exploits
parallel exploration on multiple processors.

In this paper we propose an external, distributed and directed on-
the-fly model checking algorithm to check general LTL properties in
the model checker SPIN. Previous attempts are restricted to check-
ing safety properties. The worst-case /O complexity is bounded by
O(sort(|F||R|)/p+1-scan(|F||S|)), where S and R are the sets of visited
states and transitions in the synchronized product of the Biichi automata
for the model and the property specification, F is the number of accept-
ing states, [ is the length of the shortest counterexample, and p is the
number of processors. The algorithm we propose returns minimal lasso-
shaped counterexamples and includes refinements for property-driven
exploration.

1 Introduction

The core limitation to the exploration of systems are bounded main memory
resources. Relying on virtual memory slows down the exploration due to excessive
page faults. External algorithms [31] exploit hard disk space and organize the
access to secondary memory. Originally designed for explicit graphs, external
search algorithms have shown considerably good performances in the large-scale
breadth-first and guided exploration of games [22,12] and in the analysis of
model checking problems [24]'.

the idea of external model checking was introduced in A Directed explicit-
state model checking [13] enhances the error-reporting capabilities of model
checkers. The application of guided search for checking liveness properties is
restricted to the reduction of trails [14].

Distributed explicit state model checking [9, 25] uses several processors work-
ing in parallel to enhance the exploration of larger models.

1 An anonymous referee has pointed us to the work of Roscoe: Model Checking CSP in
A Classical Mind, Essays in Honour of C.A.R. Hoare, Prentice-Hall 1994, which also
introduces to the idea of external model checking for the FDR system. Unfortunately,
we haven’t been able to access the reference.

A. Valmari (Ed.): SPIN 2006, LNCS 3925, pp. 1-18, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In [18] we have given a first report on combining directed, parallel and ex-
ternal explicit-state model checking to enhance the search for minimal coun-
terexamples for safety errors. Under certain assumptions on the distribution of
the applied hash function and the number of file pointers we showed that the
approach uses linear, i.e., O(scan(|S| + |R|)) I/Os. In a sequential setting, for
safety explicit-state model checking state-space graphs with bounded locality we
arrive at O(sort(|R]|) + scan(|S])) I/Os, which is optimal [12].

The goal of this work is to extend this work to the exploration for check-
ing liveness properties. The main challenge for distributed and external on-the-
fly model checking is that the depth-first traversal of the global state space
graph as used in Nested-DFS (an on-the-fly variant of Tarjan’s algorithm [35])
is not efficient. All attempts to solve this problem via variants of breadth-first
search [7,4,9] arrive at a time complexity that is non-linear in the size of the
model. The approach we propose in this paper is based on a translation proce-
dure of liveness problems into safety problems [32]. The translation approach has
the advantage that the underlying algorithm design to detect safety errors has
not to be changed. More crucially, the approach includes a rich state description
which allows to express lower bounds for cost-optimal guided search. To enhance
the exploration, we additionally exploit the never-claim automaton structure of
the temporal property to be satisfied.

The paper is structured as follows. First we briefly review explicit-state LTL
model checking using Biichi automata. Then we consider distributed model
checking together with its limits and possibilities. Afterwards we introduce to
external model checking safety properties and delayed duplication detection. We
first consider breadth-first implicit graph search. Next we turn to the guided
search, recalling the algorithm Fxternal A* The upcoming section points out
the problems in externalizing standard DFS model checking algorithms. This
leads to the proposed approach for 1/0O efficient parallel external model check-
ing. We provide monotone heuristics for optimal counterexample search and give
empirical data for checking LTL formulae in an external and parallel variant of
the SPIN model checker. Finally, we draw conclusions and indicate further re-
search avenues.

2 Explicit-State Model Checking

In automata-based model checking, both the model to be analyzed and the spec-
ification to be checked are modeled as non-deterministic Bichi automata. Syn-
tactically, Biichi automata are ordinary automata. For accepting infinite words,
or runs, a different acceptance condition is applied. Let p be a run and inf(p) be
the set of states reached infinitely often in p, then a Biichi automaton accepts,
if the intersection between inf(p) and the set of final states F' is not empty.

2.1 Automata-Based LTL Model Checking

The desired property of the system is specified in some form of temporal logic. We
briefly introduce linear temporal logic (LTL). A path in model M is a sequence
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of states m = Sp, S1,... and 7w denotes the suffix of 7 starting at S;. LTL
formulae have the form “Always f”, where f is a path formula. If p is an atomic
proposition then p is a path formula. If f and g are path formulae so are =f, f V
g, fNg, X f,F f,G f,and f U g.

Transforming the model and the specification into Biichi automata assumes
that systems can be modeled by automata, and that the LTL formula can be
transformed into an equivalent Biichi automaton. The converse is not always
possible, since Biichi automata are clearly more expressive than LTL expres-
sions [36]. Checking correctness is reduced to checking language emptiness. More
formally, the model checking procedure validates that a model represented by
an automaton M satisfies its specification represented by an automaton S. The
task is to verify if L(M) C L(S). In words: the language accepted by the model
is included in that of the specification. We have L(M) C L(S) if and only if
LM) N L(S) = 0. In practice, checking language emptiness is more efficient
than checking language inclusion. Biichi automata are closed under intersection
and complementation [8], so that there exists an automaton that accepts L£(S)
and an automata that accepts L(M) N L(S). It is possible to complement Biichi
automaton equivalent to an LTL formula, but the worst-case running time of
such a construction is double-exponential in the size of the formula. Therefore,
in practice one constructs the never-claim automaton for negation of the LTL
formula, avoiding complementation.

The product is synchronous, that is each transition in one automaton implies
one in the other. The property automaton is non-deterministic, such that both
the successor generation and the temporal formula representation may introduce
branching to the overall exploration. The construction assumes that all states in
the model are accepting. If arbitrary Biichi automata are intersected, extended
acceptance conditions are required [11].

For checking emptiness we have to check that the automaton accepts no
word. Accepting runs are present in the automaton if the strongly connected
components (SCCs) reachable from the initial state contain at least one accept-
ing state. In this case, a reachable cycle contains at least one accepting state.
Checking language emptiness corresponds to the validation that no such cycle
exists.

2.2 Tarjan’s Algorithm

For finding accepting cycles, we analyze the state space graph structure; more
precisely, the strongly connected components, SCCs for short. An algorithm to
compute all such components of a graph in linear time is Tarjan’s algorithm [35].
The algorithm is divided into four stages. In the first stage, a DFS starting at
the initial state computes the discovery and finishing times ¢4(u) and ¢ (u) for
each visited state u, which corresponds to the time, when node u is entered and
left. The second stage computes the inverse of the graph. In the third stage, a
series of DF'Ss considers the nodes in order of decreasing ty-value. The fourth
and last stage outputs the nodes of each tree in the DFS forest of the third stage
as a strongly connected component.
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2.3 Nested DFS

On-the-fly model checking is an efficient way to perform model checking. It com-
putes the global state transition graph during the construction of the intersec-
tion. The advantage is that only a part of the state space is constructed, which
is needed in order to check the desired property.

For checking the synchronous product graph of the model and the speci-
fication for accepting cycles on-the-fly, nested-depth-first search has been pro-
posed [17]. Tt explores the state space in a depth-first manner, stores visited
states in a visited list, marks states which are on the current search stack, and
invokes a secondary DFS starting at accepting states after they have been fully
explored in the primary DFS. The secondary DFS explores states already visited
by the primary search but not by any secondary search; states visited by the
second search are flagged and if a state is found on the stack of first search, an
accepting cycle is found. Typical implementations use 2 bits per state, one for
marking, one for flagging. As with Tarjan’s algorithm its worst-case is linear in
the size of the intersected state transition graph, but it is capable of reporting
counter-examples before the entire state space has been seen.

Property-driven or improved nested-depth-first search [3,25] partitions the
never-claim into SCCs. The main observation is that cycles in the state transi-
tion graph of the intersection of the system M and the never-claim automaton
N is accepting only if the corresponding cycle in N is accepting. Therefore,
these approaches use Tarjan’s algorithm to analyze never-claim. An SCC in A/
is called non-accepting if none of its states is accepting; fully-accepting, if each
cycle formed by states of the SCC is accepting, and partially-accepting, other-
wise. Improved nested DFS partitions the never-claim into SCCs and applies
secondary search only in case of partially accepting cycles.

3 Distributed Model Checking LTL

Liveness property validation based on DFS appears to be an inappropriate choice
for distributed model checking. For distributed model checking the core reason
is that in contrast to BFS, DFS appears to be inherently sequential [29]. Differ-
ent attempts have been suggested to allow an efficient parallelization for model
checking liveness. Unfortunately, none of the approaches guarantee a linear time
complexity.

3.1 Breadth-First LTL Model Checking

A line of research tries to avoid nested depth-first search by studying variants of
breadth-first search [5, 4, 7]. The approach presented in [5, 4] invokes a secondary
search for detecting cycles from BFS backward edges, i.e., transitions encountered
in the overall state space that link states in larger, together with (already ex-
plored) states in smaller depth. Those backward edges may potentially spawn
cycles and are searched individually. If no accepting cycle is found the depth
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bound is increased. The number of backward edges is reduced by similar obser-
vations as in improved nested depth-first search. The worst case time complexity
is O(|R|-(|S|+|R|)). The approach allows on-the-fly model checking and is com-
patible with a limited form of partial order reduction. In [7], instead of backward
edges, predecessor acceptance is chosen for an O(|R|? + |S|) algorithm.

3.2 Explicit Fair Cycle Detection

In [9], the symbolic OWCTY? algorithm [15] is converted into an explicit one.
Similar to Tarjan’s algorithm, the approach computes the entire reachability
set before extracting the cycle. Unlike Tarjan’s algorithm, the order of the ex-
ploration does not matter. Next, a loop alternates between a reachability and
elimination phase unless a fixpoint is reached. In the first phase, fair states are
checked if they can be reached again. In the second phase, states with a de-
termined fair status are eliminated from the search. The worst case number of
iterations is bounded by the diameter d of the search space. The explicit state
conversion of the approach runs in O(d- (|R|+|S])) time and has been exploited
to perform distributed model checking. Cycle extraction for counter-example
generation runs in linear time.

4 External Model Checking Safety

I/O-efficient model checking algorithms explicitly manage the memory hierar-
chy and can lead to substantial speedups compared to caching and pre-fetching
heuristics of the underlying operating system, since they are more informed to
predict and adjust future memory access.

The standard model for comparing the performance of external algorithms
consists of a single processor, a small internal memory that can hold up to M
data items, and an unlimited secondary memory. The size of the input problem
(in terms of the number of records) is abbreviated by N. Moreover, the block
size B governs the bandwidth of memory transfers. It is often convenient to refer
to these parameters in terms of blocks, so we define m = M/B and n = N/B.
It is usually assumed that at the beginning of the algorithm, the input data is
stored in contiguous blocks on external memory, and the same must hold for the
output. Only the number of block reads and writes are counted, computations
in internal memory do not incur any cost. The single disk model for external
algorithms has been invented by [2]. An extension of the model considers D disks
that can be accessed simultaneously. When using multiple disks in parallel, the
technique of disk striping can be employed to essentially increase the block size
by a factor of D. Successive blocks are distributed across different disks.

It is convenient to express the complexity of external-memory algorithms us-
ing a number of frequently occurring primitive operations. The simplest opera-
tion is scanning, which means reading a stream of records stored consecutively on

2 Acronym for One Way to Catch them Young.
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secondary memory. In this case, it is trivial to exploit disk- and block-parallelism.
The number of I/Os is scan(N) = ©( )5 ) = O(}). Another important operation
is external sorting. The proposed algorithms fall into two categories: those based
on the merging paradigm, and those based on the distribution paradigm. The
algorithms’ complexity is sort(N) = O( Y, logar/ B %) =06(}log,, n).

4.1 External BFS

Recall the standard internal-memory BFS algorithm: it visits each node v € V' of
the input problem graph G in a one-by-one fashion, as stored in a FIFO queue.
After a node v is extracted, its adjacency list (the sets of neighbors in G) is
examined, and those of them that haven’t been visited so far are inserted into
the queue in turn. In external search the internal queue is substituted with a file.
Naively running the standard internal-BFS algorithm in the same way in external
memory will result in ©(|S]) I/O0s for unstructured accesses to the adjacency
lists, and @(|R]) I/Os for finding out whether neighboring nodes have already
been visited. The explicit external graph algorithm of [27] improves on the latter
complexity for the case of undirected graphs, in which duplicates are constrained
to be located in adjacent levels. After the preprocessing step the graph is stored
in adjacency-list representation, it generating the multi-set of neighbors for each
BFS-level followed by a duplicate elimination phase. Duplicate elimination is
realized via external sorting followed by an external scan. External BFS requires
O(|S|+ sort(|R])) time, where O(|S]|) is due to the external representation of the
graph and the initial reconfiguration time to enable efficient successor generation.

An implicit variant of the above algorithm algorithm [27] for explicit BFS-
search in implicit graphs has been coined to the term delayed duplicate detection
for frontier search [21]. It assumes an undirected search graph. The algorithm
maintains BFS layers on disk. Layer L(i — 1) is scanned and the set of successors
are put into a buffer of size close to the main memory capacity. If the buffer
becomes full, internal sorting followed by a duplicate elimination scanning phase
generates a sorted duplicate-free state sequence in the buffer that is flushed to
disk. The outcome of this phase are k sorted files. In the next step, external
merging is applied to unify the files into L(i) by a simultaneous scan. The size
of the output files is chosen such that a single pass suffices. Duplicates are elim-
inated. Since the files were sorted, the complexity is given by the scanning time
of all files. One also has to eliminate L(i — 1) and L(i — 2) from L(%) to avoid
re-computations; that is, nodes extracted from the external queue are not imme-
diately deleted, but kept until after the layer has been completely generated and
sorted, at which point duplicates can be eliminated using a parallel scan. The
process is repeated until L(i — 1) becomes empty, or the goal has been found.
The total execution time is O(sort(|R|) + scan(|S])) I/Os. The I/O optimality
of External BFS is based on the work of [1], who gave a matching lower bound
for external sorting.

External BFS has been successfully applied to fully explore the 15-Puzzle
using 1.4 terabytes of hard disk in about three weeks [22]. The algorithm shares
similarities with the internal frontier search algorithms [23] that were used
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for solving multiple sequence alignment problem, an idea that goes back to
Hirschberg [16].

4.2 External A*

Ezternal A* [12] maintains the search space on disk. The priority queue data
structure is represented as a list of buckets. In the course of the algorithm, each
bucket L(i,j) will contain all states u with path length g(u) = ¢ and heuristic
estimate h(u) = j. We will later discuss how such estimates can be derived in
real-time minimum-cost reachability analysis. As same states have same heuristic
estimates, it is easy to restrict duplicate detection to buckets of the same h-value.
By an assumed undirected, unweighted state space problem graph structure, we
can restrict aspirants for duplicate detection further. If all duplicates of a state
with g-value ¢ are removed with respect to the levels ¢, ¢« — 1 and ¢ — 2, then no
duplicate state will remain for the entire search process. For breadth-first-search
in explicit graphs, this is in fact the algorithm of [27]. We consider each bucket
as a different file that has an individual internal buffer. A bucket is active if
some of its states are currently expanded or generated. If a buffer becomes full,
then it is flushed to disk.

Since External A* simulates A* and changes only the order of elements to
be expanded that have the same f-value, completeness and optimality are in-
herited from the properties of A*. The I/O complexity for External A* in an
implicit unweighted and undirected graph with monotone estimates is bounded
by O(sort(|R|)+ scan(|S])), where |S| and |R| are the number of nodes and edges
in the explored subgraph of the state space problem graph. It has been shown [12]
that the lower bound for the delayed duplicate detection is §2(sort(|S|)) I/Os.

Parallel External A* [18] is a parallel variant of External A* based on queues
of working requests. In the exploration stage, each processor flushes the succes-
sors with a particular g and h value to an individual file. It has its own hash
table and eliminates some duplicates already in main memory. If the output
buffer exceeds memory capacity the processor writes the hash table to disk. In
a first sorting stage, it sorts its own files. The number of file pointers needed is
restricted by the number of flushed buffers. In the distribution stage, a single
processor distributes all states in the pre-sorted files into different files accord-
ing to the hash value’s range. As all input files are sorted this is a mere scan.
In the second sorting stage, processors externally sort the partially sorted files
to find further duplicates. The output of this phase are sorted and partitioned
buffers. Using the hash index as the sorting key the concatenation of files is
totally sorted.

5 Problems with Externalizing DFS

External depth-first search relies on an external stack data structure. The search
stack is small compared to the overall search but in the worst-case it can become
large. For an external stack, the buffer is just an internal memory array of 2B
elements that at any time contains the k < 2B elements most recently inserted.
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We assume that the stack content is bounded by at most N elements. A pop
operation incurs no I/O, except for the case where the buffer has run empty,
where O(1) I/O to retrieve a block of B elements is sufficient. A push operation
incurs no I/0, except for the case where the buffer has run full, where O(1) I/0
is to retrieve a block of B elements is needed. Insertion and deletion take 1/B
I/Os in the amortized sense.

The I/0O complexity for external DFS for explicit (possible directed) graphs
has been shown to be O(|S| + |S|/M - scan(|R])) [10]. There are |S|/M stages
where the internal buffer for the visited state set becomes full, in which case
it is flushed and duplicates are eliminated from the external adjacency list rep-
resentation by a file scan. Visited successors in the unexplored adjacency lists
are marked not to be generated again, such that all states in the internal vis-
ited list can be eliminated for good. As with External BFS in explicit graphs,
value O(|S]) I/Os is due to the unstructured access to the external adjacency
list. Computing SCCs in explicit graphs has the same I/O complexity as DFS,
i.e. O(|S| +|S|/M - scan(|R|)) 1/Os. For implicit graphs as generated for model
checking liveness, no access to an external adjacency list is needed, so that the
world should look better. Dropping the term of O(|S]) I/O as with External
BF'S, however, is a challenge. The major problem for external DFS exploration
in implicit graphs is that unseen adjacencies cannot been modeled and there is
no time for performing delayed duplicate detection. For implicit graphs this is
not available, as we cannot access the search graph that we have not seen so far.

6 Large-Scale Model Checking Liveness

We decided to build our external model checker on top of the liveness as safety
model checking approach [32]. It proposes to convert a liveness model checking
problem into a safety model checking problem by roughly doubling the state vec-
tor size and guessing the seed of a fairness cycle. More precisely, the proposed
extension stores with the current state s a previously seen state s’ together with
two flags start-cycle and closed-cycle. The first flag is set to prevent future over-
writing of the stored state. The second flag indicates that a second occurrence
of s’ has been found. Unless the seed of the cycle has not been guessed s equals
s'. The initial state is spawned to two states, one attached to (false,false) and
the other attached to true,false). If S and R are the set of states and the set
of transitions of the synchronous product of the model and the (never-claim)
specification, then S is searched at most |S| times, yielding a time complexity
of O(|S] - (IS +[RI))-

The most important observation is that based on this extension the explo-
ration algorithms themselves have not (or only in a minor way) to be changed.
For example, in [32] the authors show how to extend models using so-called ob-
servers and applying the same model checker. In [33] the authors showed that
for fairness constraints of the form Fp we have that

p = (51 N 5171)(51 . Sk,1)w
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is a run in the state space S if and only if
pIZ(So, S0,0,0)...(Si-1,S81-1,0,0)((S1, 51, 1,0) ... (Sk—1,51,1,0)) (S}, Si, 1, 1)

is a run in the extended state space S’.

As this construction does not yet record Biichi automaton acceptance con-
ditions for explicit-state model checking, as suggested by [32], we work with a
slightly different state description. State pairs in the first phase are called pri-
mary states, states pairs in the secondary phase are called sencondary states.
We drop Boolean variables completely as we distinguish primary from secondary
states by comparing the state vectors of the state pair. Moreover, we spawn sec-
ondary children only at accepting primary states.

Without any heuristic the algorithm executes external breadth-first search,
where each iteration can actually be seen as a snapshot in bounded automata-
based model checking. Bounded model checking [6] uses a propositional SAT
solver for the symbolic exploration of model checking problems. It exploits the
SATPLAN exploration idea of [20] using a rising search horizon k to generate
Boolean formulae encoding the overall exploration problem up the BFS-level
k. In bounded automata-based model checking we use a similar approach, but
without using BDDs nor SAT-formulae. To avoid traversing the full state space
in Tarjan’s algorithm, we analyze the cross product graph up to some threshold
depth value k. If we find a counter-example already in depth k we terminate,
otherwise we increase k. The bounded semantics for this strategy are the same
as in BMC [6]: = |4 p if and only if p € L(p(i)), # L —p if and only if
p & L(p(i)), = EL fAgifand only if 7 |, fand 7w E, g, 7 EL fVgif
and only if m i f or m L g, m =L Gfis always false, 7 =i Ff if and only
if 3j,i <j<k:m f, 7 EL Xfif and only if i < k and 7 ;"' f, and
77):2ngifandonlyifEIjJﬁjﬁk:w):iganan7i§n<j:7r|:Zf.

Theorem 1. For problem graphs the external BFS LTL model checking algo-
rithm finds the shortest counterezample with an accepting seed state. Its 1/0
complezity is O(sort(|F||R|) +1-scan(|F||S|)), where | is the length of the short-
est counterexample.

Proof. Since each state is expanded at most once, all sortings can be done in
time O(sort(|F||R|)) 1/Os. Filtering, evaluating, and merging are all available
in scanning time of the buckets in consideration. The I/O complexity for pre-
decessor elimination depends on the number of buckets that are referred to
during file subtraction/reduction. The number of buckets is bounded by the
number of layers and thus the length of the shortest counterexample. Conse-
quently, the I/O complexity for large-scale LTL model checking is bounded by
O(sort(|F||R|) +1 - scan(|F||S])) 1/Os.

6.1 Heuristics for Safety Model Checking

For defining heuristics for safety model checking, we assume that the global state
space is generated based on the asynchronous compositions of local state spaces
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Pi, i € {1,...,n}, called processes. In other words, each global system state
is partitioned into n local states. The state of a local process P; is called its
program counter, i € {1,...,n}, pe; for short.

The FSM distance heuristic is defined as the sum for each P; of the distance
between the local state of P; in s and the local state of P; in &', i.e.,

Hu(s,8') = Y Di(pe(s), pe(s),
i=1

where D;(pc;(s), pc;(s")) denotes the shortest path from pc,(s) to pc,(s’) in the
automaton representation of P;. The values for D; are computed prior to the
search.

6.2 Trail-Directed Heuristics

The FSM distance heuristic assumes that both states s and s’ are known to the
exploration module. It has mainly been used in trail-directed search, where a
counter-example to an existing error state is to be shortened. It has also been
applied to the verification of liveness properties where the prefix path to the
start of the cycle and the accepting cycle itself are shortened in sequence. For
this case the distance in the never-claim automaton N is included as follows

H,,(s,8") = max {H (s, s"), Da(per(s), pea(s))} -

As the product of different processes is asynchronous, it is not difficult to see [26]
that the FSM distance is monotone, i.e., Hy,(s) — H,,(s") < 1 for each pair (s, s)
with s’ being the direct successor of s. Monotone heuristics guarantee the op-
timality of counterexample paths in heuristic search exploration algorithms like
A* [28]. Tt is also not difficult to see that the maximum of two monotone heuris-
tics is monotone. Hence, H/ (s, s’) is also a monotone heuristic for shortening
liveness trails.

6.3 Heuristic for LTL Properties

In the extended search space S8’ we search for shortest lasso-shaped counterexam-
ples, without knowing the start of the cycle beforehand. We used the monotone
heuristic

H,(s) = Join {Dnr(pepr(s), pear(s')}

for finding accepting states in the original search space.

States in the extended search are abbreviated by tuples (s, s’), with s record-
ing the start state of the cycle s’ being the current search state. If we reach
an accepting state, we immediately switch to secondary search. Therefore, we
observe two distinct cases: primary search, accepting state not yet reached, sec-
ondary search, accepting state once found. The state s = s’ reached in secondary
search is the goal. As it is a successor of a secondary state, we can distinguish
the situation from reaching such a state for the first time.
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For all e = (s,s’) in the extended search space §’, let H,(e) = Hy(s) and
Hys(e) = Hp(s,8'). Now we are ready to define a heuristic for liveness

_ [ Hu(s) ifs=4¢
H(e)_{wa(s,s’) if s £ (1)

Lemma 1. Let h*(e) be the shortest lasso-shaped counterexample with an ac-
cepting seed state starting at e. Then H(e) is a lower bound on h*(e).

Proof. As each counterexample has to contain at least one accepting state in the
never-claim, for primary states e we have that H = H,(e) is a lower bound. For
secondary states e = (s, s'), we have

H(e) = HJ/\/[(S7 5/) = maX{HM(s7 S/)a DN(pCN(S),pCN(S/))}7
a lower bound to close the cycle and the lasso in total.

Lemma 2. The estimator H is monotone, i.e., H(e) — H(e') < 1 for all suc-
cessor states €' of e.

Proof. Consistency is a local property. As both H, and Hj, are monotone [26]
and only one of them is true at a time, the only thing we have to show that H is
monotone are the transitions between the different cases. The only problematic
situation is the transition in case of reaching an accepting state. Here we have
that a predecessor e with an evaluation of H(e) = Hy(e) = 0 spawns successors
e’ with evaluation values of Hys(e’) > 0. However, this incurs no problem as
H(e) — H(e') <1 still preserves monotonicity.

The gap between Hjp; and H, at accepting states may indicate that there is
some option for applying an improved search estimate.

The next result shows that, given a monotone heuristic estimate, our ap-
proach terminates with an minimal-length counterexample where the lasso seed
is accepting. If one allows seed states also to be non-accepting, there are poten-
tially shorter counterexamples. This is possible if the accepting state is reachable
only via a non-accepting seed. In this case the path from the seed to the accept-
ing state would appear twice in the corresponding counterexample found in our
algorithm starting the secondary search from an accepting seed state. Note that
this subtlety does not effect completeness, a lasso with accepting seed exists if
and only if an lasso with an accepting cycle exists.

7 External Guided Exploration

The model checking algorithm for directed external LTL search is an extension
External A* and traverse the bucket file list along growing f = g + h diagonals.
In each external state we store (packed) original state vector pairs (s,s’) with
!/
s=s'.
Figure 1 (left) depicts a prototypical execution of the guided exploration. For
primary nodes (illustrated using two white half circles), we apply the heuristic
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Fig. 1. Directed model checking LTL (left), distribution among several processors
(right)

H,, while for secondary nodes (illustrated using cycles half white/half black) we
apply the estimate H,,. Once a terminal state with s = ¢’ (illustrated using two
black half circles) is reached we have found an accepting cycle.

Figure 1 (right) illustrates how to perform parallel exploration®. The internal
work for exploration a bucket is uniformly distributed among the set of available
processors, that individually expand and sort individual files as described above.

Theorem 2. For problem graphs the external, parallel and guided LTL model
checking algorithm finds the shortest counterexample with an accepting seed state.
Its I/O complexity is O(sort(|F||R|)/p + 1 - scan(|F||S])), where | is the length
of the shortest counterexample.

Proof. The proof is analogous to Theorem 1. Additionally, the parallelism divides
the sorting efforts.

The main advantage of directed search is that the set of expanded states S (and
subsequently R) is smaller than with blind search.

The solution path is reconstructed by backward chaining starting with the
final state. There are two main options. Either for a state in depth g we intersect
the set of possible predecessors with the buckets of depth g — 1. Any state that
is in the intersection is reachable on an optimal solution path, so that we can
recur. As generating the predecessor state can be problematic in software model

3 For a full treatment of the parallel execution of External A* we refer the reader
to [19]. As the paper is not printed yet, the reviewers can obtain a copy of the work
at http://1sb-www.cs.uni-dortmund.de/~jabbar/vmcaiO6.pdf
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checking domains, we may store with each state its predecessor on a shortest
path, doubling the required disk space. The time complexity is bounded by the
scanning time of at most [ buckets in consideration and surely in O(scan(|F||S])).

8 Experiments

We implemented external LTL property validation on top of our experimental
model checker IO-HSF-SPIN [18], the recent extension the directed model check-
ing SPIN-derivate HSF-SPIN. The inputs are Promela-files and the output is a
trail file in SPIN’s format. The Promela language scope of IO-HSF-SPIN is not
as large as in SPIN as it lacks some features like fully dynamic process creation
and embedded c-code, but sufficiently strong even for larger models that we have
in our benchmark set.

As with its ancestors, in IO-HSF-SPIN Promela models are compiled into
self-contained model checking units. The experiments for single-processor were
conducted on a Pentium-4 PC, 3 GHz with 2 gigabytes of main memory and 180
gigabytes of hard disk. We exploit disk parallelism by RAID 0 using two hard
disk. For multi-processor experiments we chose a Sun Enterprise System with
four 750 MHz processors working with 8 gigabyte RAM and 30 gigabyte shared
hard disk space. In this case, we worked with a single hard disk, so that no form
of disk parallelism was exploited.

We choose a small internal buffer size for buffered reading and writing con-
sisting of only 1,997 states. We applied internal (hash table based) and external
(delayed) duplicate detection within the next bucket to expand. Duplicate elimi-
nation with respect to visited states in previous buckets is not done. This reduces
the number of scans to linear-time complexity by the cost of some redundant
states. The heuristic we applied takes a combination of H, (for primary search)
and Hys (for secondary search).

When comparing to SPIN it should be noted that this model checker was
invoked with partial order reduction. Actually, as indicated by [26], partial order
reduction preserves completeness but not optimality. It may lead to non-optimal
counterexamples.

In our first set of experiments we use an elevator simulation protocol®. Table 1
shows the exploration results. We denote the number of expanded states, the
number of states inserted to the hash table, the CPU time consumed and the
length of the counterexample obtained. The sizes of the counterexamples are
divided into the prefix and cycle length.

We compare the results of the exploration of External BFS and External
A* as implemented in IO-HSF-SPIN with Nested-DFS as implemented in SPIN,
Distribution 4.2. Due to the statistic information provided by SPIN instead of
the number of expanded and inserted states, we give the number of stored states
and explored transitions®. SPIN and I0-HSF-SPIN return counterexamples that

4 The SPIN code we started with was SPIN 3.4.
% Derived from www.inf.ethz.ch/personal/biere/teaching/mctools/elsim.html
5 The counterexamples are produced with the options -t -p.
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Table 1. LTL Model Checking with External A*, External BFS and Internal Nested
DFS for 2-Elevator protocol

I/O-HSF-SPIN Expanded Inserted Time Length
External A* 2,090,933 2,275,778 1ml8s 67 + 34
External BFS 2,642,575 2,827,073 2m3.96s 67 + 34
SPIN 4.2  Transition Stored Time Length
Nested DFS 33,900 11,149 0m0.064s 109 + 100

Table 2. LTL Model Checking with External A*  External BFS and Internal Nested
DFS for SGC protocol

I/O-HSF-SPIN Expanded Inserted Time Length
External A* 178 369 O0ml1.318s 15+ 5
External BFS 1,343 1,427 OmO0.787s 15+ 5
SPIN 4.2  Transition Stored Time Length
Nested DFS 155,963 8,500 1m47s 18+5

start at accepting states”. We observe that SPIN’s counterexamples are in gen-
eral longer than the ones in I0-HSF-SPIN®,

From the results of our first experiments we do not see a large gain of External
A* compared to External BFS in the number of expanded and inserted states.
The established counterexample lengths match. In the time, however, we see that
External A* is considerably faster. There a different reason for the difference
in ratios for the number of expansions and CPU time. First, as there are less
buckets in External BFS (one for every layer) compared to External A*, there
are more I/Os needed for external sorting. The other reason is that the number of
generated nodes that fall into the buckets that are not considered for expansion
(with counterexample length larger than the optimum) are larger for External
BFS.

SPIN’s exploration is remarkably good, as it requires only 6 milliseconds
for generating an optimized trail. The number of stored nodes for Nested-DFS
is much smaller as compared to blind BFS and A* LTL property search. The
established counterexample is longer.

In the second experiment we take a larger protocol, as used in [37], a Promela
model of a procedure with related processes. In Table 2 we see an opposite
behavior as compared to the previous experiment. External search performed
a much smaller number of expansions than internal iterated Nested DFS. The

7 Without the predefined bound on the search depth, SPIN tends to find very long
counterexamples, e.g. with 9998 steps. We therefore chose an iterative depth-first
search strategy -i for SPIN. As this option may be caught in a depth anomaly [26]
we also checked option -DREACH, which should return optimal traces. However, the
results we obtained with this setting were not better than with -1i.

This is not neccessarily due to their non-optimality, but probably relying on a dif-
ferent measurement for steps, as SPIN is likely to put some additional increment on
synchronized never-claim transitions.
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reason is that iterative improvement strategy takes a long time to decrease the
counterexample length to a feasible low number. The behavior of External BFS
compared to External A* is also opposite to the above. Now the number of
expansion is smaller in External A* is much smaller due to its good guidance, but
External BFS CPU time is superior. The reason for this is that the distribution
of the heuristic estimate is fine-grained such that many internal buckets have to
be allocated but never used.

In the third set of experiments we choose the scalable Dining Philosophers
protocol with 64 philosophers. The LTL property we checked for was

[1 (philosopher[1]@eat -> <> philosopher[2]@eat)

realizing the response property that always if the first philosopher eats, so does
the second. Table 3 shows our results. Coincidently, the number of expanded
nodes for guided and unguided external search match. The number of inserted
nodes is, however, smaller for External BFS. We explain this behavior by absence
of external duplicate removal for unexplored buckets. In agreement with this
argument, External BFS took more time to perform external delayed duplicate
detection. SPIN, unfortunately, ran out of memory. It found counterexample
in very large depth, but was unable to shorten the trail. Even provided with a
depth bound of 300 it was unable to terminate its iterated improvement strategy,
due to the limits of main memory, which in our case was 2 gigabytes. Manually
adapting the search depth to the optimum of 212 allowed SPIN to complete its
exploration finding a counterexample with a acceptance cycle seed at depth 207.

For distributed execution on the multi-processor machine we again choose
the Dining Philosopher example (see Table 4), now scaled to 128 philosophers.
First, we note that disk space consumption is considerably large. The single
processor version could not finish its exploration. One file for the set generated
states became larger than 2 gigabytes and was killed by the operating system.

Table 3. LTL Model Checking with External A*, External BFS and Internal Nested
DFS for 64-Dining Philosopher

I/O-HSF-SPIN Expanded Inserted Time  Length

External A* 2,298 127,813 0m6.108s 196 + 2
External BFS 2,298 47,118 0m13.549s 196 + 2

SPIN 4.2 Transition Stored Time  Length
Nested DFS  -out-of-mem- -out-of-mem- - -

Table 4. LTL Model Checking with External A* for 128-Dining Philosopher

I/O-HSF-SPIN Time Secondary Memory Length
1 processor - - -
2 processors 5mb53.96s 4.7 gigabytes 388 + 2
3 processors 4m7.13s  5.28 gigabytes 388 + 2
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The reason that the multi-processor versions could finalize their implementation,
is early duplicate detection in intermediate files. The length of the produced
counterexamples match and the observed speed-up is noticeable.

9 Conclusion

In this work we have combined directed, external and parallel approaches to
compute optimal counterexamples for LTL properties in explicit-state model
checking. The I/O complexity of O(sort(|F||R|)/p + 1 - scan(|F||S])) is a dras-
tic improvement to simulating DFS as done for computing strongly connected
components in explicit graphs with Tarjan’s algorithm, as it avoids unstructured
access to the adjacency lists. Different to NestedDF'S the approach provides an
optimality guarantee on the length of the counterexample.

The search space is generated using state pairs of active and cycle seed state,
which supports the design of monotone LTL heuristics for directed model check-
ing. Primary and secondary search states are examined together in one common
file. The underlying exploration algorithm extends External A* to allow accept-
ing cycles to be found. As with External A*, the approach can be effectively
be parallelized. Duplicate detection is delayed. Up to synchronization mecha-
nism for work distribution, no communication between the individual processes
is needed, which in large problems allows almost linear speed-ups in a distributed
environment.

With this research, we hope to have pushed the limits of practical model
checking where the internal memory does not limit the number of realistic mod-
els that can be verified. With our support of pause-and-resume the size of the
secondary storage can be resized without harming the correctness of the model
checking process. Combining this with our approach presented in [19] on parallel
external guided safety model checking, we now put our focus on larger industrial-
sized models, which means targeting towards state spaces requiring terrabytes
of storage.

A challenge for future research will be to reduce the (sequential) time com-
plexity to O(sort(|R]|) + scan(|S])) as for safety model checking.

Acknowledgments. The work is supported by Deutsche Forschungsgemeinschaft
(DFG) in the projects Heuristic Search (Ed 74/3) and Directed Model Checking
(Ed 74/2).
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Abstract. In directed model checking, the traversal of the state space
is guided by an estimate of the distance from the current state to the
nearest error state. This paper presents a distance-preserving abstraction
for concurrent systems that allows one to compute an interesting estimate
of the error distance without hitting the state explosion problem. Our
experiments show a dramatic reduction both in the number of states
explored by the model checker and in the total runtime.

1 Introduction

The number of states of a concurrent system is exponential in the num-
ber of its components. This fundamental state explosion problem raises a
complexity-theoretic barrier for all algorithmic methods based on state space
traversal. As a consequence, it will always be interesting to investigate new
approaches to circumvent the problem at least in particular situations. Directed
model checking is one such approach that has received a lot of attention re-
cently [1,2,4,7,10,13,17,20]. The idea is to automatically compute an estimate
of the error distance, which is the minimal number of steps between a given state
and some error state. The state space traversal is then guided (“directed”) by
the estimate. In some situations, the benefit obtained from the guidance drasti-
cally outweighs the cost of the computation of the estimate; for success stories,
we refer to [1,2,4,7,10,13,17,20].

When we apply directed model checking to concurrent systems, the basic
research question is: how can one compute an interesting estimate of the error
distance without hitting the state explosion problem?

A natural idea is to compute an appropriate abstraction of the concurrent
system and to base the estimate of the error distance between concrete states
on the error distance between corresponding abstract states. We must make
clear, however, what appropriate here means. We are not in a setting where the
state space traversal is performed over abstract states and where the abstraction
of a state aims at preserving the reachability vs. non-reachability of an error
state. Instead, the state space traversal is performed over concrete states and
the abstraction of a state aims at preserving the distance to an error state (we
call it a “distance-preserving abstraction”).

The contribution of this paper is a distance-preserving abstraction for con-
current systems that allows one to compute an interesting estimate of the er-
ror distance without hitting the state explosion problem. The definition of the
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abstraction originates from insights into the interplay between the impact of
an action-based synchronization mechanism on the error distance in concurrent
systems on the one hand and the use of estimated error distances during the
state space traversal on the other hand.

We have implemented the directed model checking method with the distance-
preserving abstraction. Our experiments indicate the usefulness of the estimate
for a number of concurrent systems. We obtain a significant reduction both in the
number of states explored and in the total running time, compared to directed
model checking with an already existing estimate function that does not take
into account synchronization.

2 Preliminaries

2.1 Notation

We verify safety properties over concurrent finite-state systems that are given
as a finite set of processes P. A process is a tuple (¥, Q, Q% Q¢, —) where X is
a finite alphabet of observable actions, @ is a finite set of states including the
initial states Q° C @ and error states Q¢ C @, and — C Q x (XU {r}) x Q is
a transition relation, where 7 represents an unobservable internal action not in
Y. A transition (p,a,p’) € — is denoted by p = p'.

An error occurs if all processes are in one of their error states Q€. Often, one
of the processes acts as the monitor for the safety property, in which case all
other processes have the trivial error condition Q¢ = Q.

The error distance dp(q) € NU{oo} of a state ¢ in a process P is the length
of a shortest path from ¢ to an error state (or oo if no such path exists).

We use a simple model of process synchronization where each observable
action is shared by exactly two processes in P. Consider a pair of processes
P, = (2;,Q:,Q%,Q%, —), i = 1,2. The parallel composition

P[Py = (21U X, Q1 X Q2,Q7 x Q9,QF x Q5,—)
synchronizes the two processes on their common action symbols (X N Xy):
p=1pq=¢, and a € (1 \ Zp) U{r}
(p.a) = (', q) iff Sp=p,qgS2q, anda e (Xy\ 1) U{r}
p>1p,q =5 ¢ for some ¢ € X1 N Yo, and a = 7.

Since parallel composition is associative and commutative, we do not dis-
tinguish systems that are composed from the same set of processes by parallel
composition in different orders. We denote the parallel composition of a set of
processes P = {P1,..., P} by ||pep P = P1l| ... || Pr.

2.2 Directed Model Checking

Model checking can be implemented as an instance of the expanding search
algorithm for directed graphs, shown in Figure 1. The algorithm maintains an
open list of visited but not yet expanded states and a closed list of states that
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Algorithm: EXPANDINGSEARCH
Input : Initial Node g of directed graph G
Output: true if a goal node is reachable from qo, false otherwise
/* Initialization */
Open := (s);
Closed := ();
while Open # () do
q := Open.pop();
if goal(q) then return true;
Closed.insert(q);
foreach successor q' of q¢ do
if ¢’ not in Open or Closed then
Open.insert(q');
end
end
return false;

Fig. 1. Algorithm EXPANDINGSEARCH decides reachability of a goal node from the
initial node of a directed graph, using lists Open and Closed

have been expanded. In each step, a state is chosen from the open list, expanded
(i.e. all its successors that were not yet visited get added to the open list), and
moved to the closed list. Organizing the open list as a FIFO queue results in a
breadth-first traversal of the state space, while a LIFO stack results in a depth-
first traversal.

In directed model checking [4], the open list is organized as a priority
queue ordered by a function h(g), which indicates the desirability of explor-
ing a state ¢, usually based on an estimate f(q) of dp(gq). The best-known
directed traversal algorithms are best-first traversal, where h(q) = f(gq), and
A* where h(q) is the sum of f(gq) and the length of the shortest (cur-
rently known) path from an initial state to ¢q. The advantage of A* is that
it finds shortest error traces if the estimate function is admissible, which
means it never overestimates dp(q). Typically, best-first traversal is faster
than A*.

An even stronger property than admissibility is consistency. An estimate
function f is consistent if, for every state g and every successor ¢’ of ¢, f(q) <
f(¢") + 1. Consistent estimate functions improve the performance of the A*
algorithm, because it is never necessary to reopen states. In general, a state ¢
has to be put back on the open list if it is encountered again on a shorter path
from the initial state. If the estimate function is consistent, we always find the
shortest path first. Every consistent estimate is also admissible [16].

Our estimate function is based on an abstraction of the system. We de-
fine the abstraction of a process as the quotient with respect to an equiva-
lence relation on the states. The quotient of a process P = (X,Q,Q°, Q¢, —)
with respect to an equivalence relation ~ C @ x @ is the process P/~ =

(2,Q/~Q%/~Ala’]~ |¢° € Q°}, =), with
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[p]~ = [q]~ iff p' % ¢ for some p’ ~ p, ¢’ ~ g,

where [¢].. denotes the equivalence class of a state ¢ € Q with respect to ~, and
Q/~ = {lq]~ | ¢ € Q} denotes the quotient set. Every abstraction P/~ induces
a consistent estimate function f(q) = dp,~([q]~) of dp(q) [16].

3 Computing the Abstract System

Our estimate function is based on an abstraction of the system, which we com-
pute in a preprocessing step before the model checking begins. To avoid con-
structing the full state space of the parallel product of all processes, we compute
the abstraction incrementally: each composition of two processes is directly fol-
lowed by an abstraction step.

Algorithm ABSTRACTSYSTEM, shown in Figure 2, describes this “compose-
and-abstract” loop. For now, we ignore the question how the abstraction of a
process is computed (we discuss algorithm ABSTRACTPROCESS in Section 4)
as well as the question in which order the processes are composed: algorithm
ABSTRACTSYSTEM is parameterized by the composition strategy, a function S
that selects a pair of two different processes from a set of processes. We discuss
the composition strategy in Section 5.

Algorithm ABSTRACTSYSTEM maintains a set of processes P’, which is ini-
tially equal to the given set of processes P and is eventually reduced to the

Algorithm: ABSTRACTSYSTEM

Input : concrete system, given as a finite set of processes P = {Pi,..., P,}
Output: e abstract system, given as process A
e mapping from concrete to abstract states:

a HpepQP - (QA U{J-})
/* Initialization */
P =P
fori=1,...,ndo ap,(q1,-.-,qn) = ¢;

/* “Compose-and-abstract” loop */
while |P’| > 1 do

(P, P") := S(P');

(C,v) := ABSTRACTPROCESS(P||P’);

P =P U{C}\{P, P}
1 if ap(q) = Lorap(q) =1L
ac(q) = .

Y(ap(g), apr () otherwise;

end

A := the remaining member of P’;
return A, aa;

Fig. 2. Algorithm ABSTRACTSYSTEM computes an abstract system for a given concrete
system
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singleton set {A}, where the process A represents the abstract system. Associ-
ated with each process P in P’ is the function ap: : [[pep @p — (Qp U{L}),
which maps each concrete state ¢ either to its abstraction in process P’ or to L.
The result ap/(q) = L indicates that ¢ is irrelevant, i.e., either ¢ is not reach-
able from the initial states or the error states are not reachable from ¢. For the
processes in P, ap is initialized with the projection to the respective component
of the product states.

In each iteration of the “compose-and-abstract” loop, two processes P and
P’ are selected from the current set P’ by the composition strategy S. Their
parallel composition P||P’ is first computed explicitly and then immediately
abstracted by ABSTRACTPROCESS to process C. In the new process set P,
process C replaces P and P’. Associated with C is the new mapping o, which
combines the mapping from the states of P||P’ to the states of C' (which is
provided by ABSTRACTPROCESS) with the mappings associated with P and P’.

The results of ABSTRACTSYSTEM are the abstract process A and the function
a, which maps concrete states to abstract states or 1. From these we derive the

estimate function
00 if a(q) =1
fla) = { @

da(a(q)) otherwise.

Since the mapping a induces an equivalence on the states of the concrete system
(p~q < a(p) = a(qg)), this estimate function is consistent for any choice of a
process abstraction and composition strategy.

4 Computing Abstract Processes

How can we ensure that the error distance of the abstract state provides a good
estimate for the error distance of the concrete state? A natural idea is to use one
state in the abstraction as a representative for each set of concrete states with
the same error distance. While this preserves the error distance in the immediate
abstraction, it changes the synchronization behavior of the process. This, in turn,
changes the error distance in the next iteration of the “compose-and-abstract”
loop, when the abstracted process is composed with some other process. The
straightforward solution of this problem, to identify only bisimilar states and
thus preserve the synchronization behavior of the process, generally does not
sufficiently reduce the state space.

Our approach draws from both ideas. We fix a bound N on the maximal
number of states in the abstraction. Within this bound, our first priority is
to ensure that only states with the same error distance are identified, and our
second priority is to preserve the synchronization behavior.

Algorithm ABSTRACTPROCESS is shown in Figure 3. As part of the initializa-
tion, ABSTRACTPROCESS prunes irrelevant states. Process P’ contains only states
that are both reachable and have paths to some error state. The computation of
the equivalence relation ~ starts with the equivalence that identifies two states iff
they have the same error distance. During the entire run of the algorithm, we only
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Algorithm: ABSTRACTPROCESS

Input : concrete process P = (X,Q,Q°% Q¢, —)
Output: e abstract process A,
e mapping from concrete to abstract states:

a:Q— (Qau{l})

/* Initialization */
Q' :={q€ Q| dp(q) < o and ¢ reachable from Q°};
P (2,0,0°NQ.Q° NQ,— n(@ x (S0 (7)) x Q)
~:= {(¢g,¢') € Q' x Q| min(dp(q), N — 1) = min(dp(q'), N — 1)};
K :=1Q'/~;
fori=0,...,K —1do
Bi:={q € Q' | min(dp(q),N — 1) =i};
R; =~ ﬁ(Bi X B-L) ;
end

/* Refinement loop */
repeat
’

~ =~

fori=0,..., K —1do
R :={(q,¢") € Ri | Ya{[r]~ [ ¢ =7} ={[""]~ [ ¢ = r'}};
if |Q'/(RiU---UR;U---URKk)| <N then
R; = Rj;
~i= U5 R
end

until ~ = ~/ ;

A:=P'/~;
g~ ifqgeq’
a(q) == d :
1 otherwise;

return A, «;

Fig. 3. Algorithm ABSTRACTPROCESS computes an abstract process for a given con-
crete process

consider refinements of this equivalence. We therefore partition the states into
buckets By, ..., By_1 according to their error distance and consider a separate
equivalence relation R; =~ N(B; X B;),i =1,..., N — 1, on each bucket.

The subsequent loop refines ~ until a fixpoint is reached. For each relation
R;, we tentatively split the equivalence classes in R; according to the equivalence
classes of their successors in ~. If the refined equivalence R does not increase the
total number of equivalence classes beyond the bound N, we refine ~ according
to R}. The buckets are considered in the order of increasing error distance,
starting with By. This choice is based on the intuition that paths from states
with high error distance traverse states with lower error distance on their way
to the error state. Inaccuracies introduced for states with high error distance
are therefore likely to affect fewer states than inaccuracies introduced for states
with low error distance.
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When the fixpoint is reached (after at most N iterations of the refinement
loop), the abstraction is computed as the quotient P’/~. The function « maps
each relevant concrete state ¢ to its equivalence class [g]~.

Experiments. To evaluate this approach experimentally, we compare ABSTRACT-
PROCESS to an alternative solution that considers buckets with high error dis-
tance first. The advantage of ABSTRACTPROCESS is especially clear in systems
with long error paths, such as the Towers of Hanoi example described in Sec-
tion 6. Figure 4 is based on data from the Towers of Hanoi benchmark with
three disks. The graph shows the average difference between estimated and ac-
tual error distance over all states with the same actual error distance in percent
of the actual error distance. The estimate obtained with ABSTRACTPROCESS
is significantly more accurate than the estimate obtained by considering
buckets with high error distance first. Both estimate functions have an area
around the error states with perfect precision, but the area of the estimate
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Fig. 4. Comparison of algorithm ABSTRACTPROCESS with an alternative solution that
considers buckets with high error distance first. The graph shows the average differ-
ence between estimated and actual error distance over all states with the same actual
error distance in percent of the actual error distance. (Data from the Towers of Hanoi
benchmark with three disks and a bound of 40 states.)



26 K. Dréger, B. Finkbeiner, and A. Podelski

obtained with ABSTRACTPROCESS is twice as large, resulting in a perfectly
informed estimate at error distance 9, where the alternative solution already
reaches its peak imprecision of 57%.

5 The Composition Strategy

Algorithm ABSTRACTPROCESS is guaranteed to preserve the error distance in
the immediate abstraction, but may cause changes to the error distance once
the abstract process is composed with further processes. The goal of the com-
position strategy is to minimize the resulting inaccuracy by choosing a pair of
processes such that the error distance in their parallel composition provides a
good estimate of the error distance in the completely composed system.

A first observation is that in processes with trivial error condition Q¢ = @,
the local error distance is 0 for all states. We therefore only consider pairs of
processes where at least one process has a non-trivial error condition. Among
these, we choose a pair such that their joint actions occur close to error states.
The result of this strategy is that we build an area close to the error states where
no synchronization is necessary to reach the error. Within this area, the local
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Fig. 5. Comparison of the ranking-based composition strategy with the default strat-
egy, which composes processes in the order in which they are defined. The graph shows
the average difference between estimated and actual error distance over all states with
the same actual error distance in percent of the actual error distance. (Data from the
Arbiter Tree benchmark with eight processes and a bound of 20 states.)
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error distance accurately reflects the error distance in the completely composed
system.
To implement this strategy, we introduce a ranking on the actions

r(P,a) =min{dp(q)|¢ € Q,3¢ €Q: ¢ > q}.

A low ranking indicates that the action may be taken in close proximity of the
error. We associate with each pair (P1, P») of two different processes the weight

min{max{r(P1,a),r(Ps,a)}|a € Xy N Xy}
and choose a pair of processes that minimizes this weight.

Experiments. We compare the described ranking-based strategy with the default
strategy that composes processes in the order in which they are defined. The
advantage of the ranking-based strategy is especially clear in systems where
only few processes have a non-trivial error condition. Figure 5 is based on data
from the Arbiter Tree benchmark (see Section 6) with eight processes, where
only two out of the eight processes have non-trivial error conditions. The graph
shows the average difference between estimated and actual error distance over all
states with the same actual error distance in percent of the actual error distance.
The ranking-based strategy results in an estimate function that is roughly twice
as accurate as the estimate function resulting from the default strategy.

6 Experiments

Our collection of benchmarks contains standard examples for distributed systems
(Arbiter Tree, Towers of Hanoi), randomly generated systems, and industrial case
studies. We have implemented our algorithms in an experimental version of the
model checker UPPAAL [14].

We evaluate our estimate function both for best-first traversal (Table 1) and
for A* (Table 2). For each benchmark, the tables show the running time, the
number of explored states, and the length of the discovered error trace. We
compare our estimate function with two different bounds (N50 and N100) to
randomized depth-first traversal (rDF) and directed model checking with the
FSM estimate function [7] (FSM).

Our experiments were carried out on an Intel Xeon 3.06 Ghz system with
4 GByte of RAM. For all experiments, we set a time limit of 30 minutes. In
the case of rDF, the table shows the average runtime over three runs. For some
benchmarks, some but not all of these runs hit our time limit. These runs were
added into the runtime average with the 30-minute timeout as their runtime.

Arbiter Tree. The Arbiter Tree [19] establishes mutual exclusion between 2%
client processes. The processes are arranged in a binary tree of height k, where
each leaf node is a client and each internal node is an arbiter that ensures mutual
exclusion between its two children, passes requests and releases upward, and
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Table 1. Experimental Results: Comparison of best-first traversal using our estimate
function for two different bounds (V50 and N100) to best-first traversal using the FSM
estimate function (FSM) and to randomized depth-first traversal (rDF')

explored states seconds trace length
Exp rDF FSM N50 N100 rDF FSM N50 N100 rDF FSM N50 N100
A2 85 54 53 46  0.01 0.01 0.06 0.10 46 45 37 25
A3 6878 420 174 187 0.05 0.05 0.24 056 323 183 79 43
A4 1994 1.3e5 1.5e5 10633 0.06 1.01 3.16 2.78 429 1003 509 157
A5 F¥* 99e5 7619 10673 1198 12.48 5.66 26.73 *** 5213 3869 1151
A6 * ¥k 4.3e5 5.2eb  ** K 6230 196.9  * ** 0 2.0e5 55535
H4 3027 4996 1283 711 0.03 0.05 0.07 0.09 573 761 181 125
H5 52417 57600 6497 6368 0.24 0.24 0.13 0.18 5528 3705 381 405
H6 3.1e5 5.0e5 1.1e5 63403 1.39 1.92 0.65 0.53 31225 26605 1445 1317
H7 1.5e6 4.5e6 7.4e5 7.5e5 7.50 20.37 4.09 4.32 2.3e5 2.0e5 3377 3177
H8 2.9e7 1.6e7 8.6e6 4.5e6 336.2 132.3 60.61 29.34 1.8e6 1.5e6 12073 6705
R5 5840 4177 697 443 0.04 0.04 0.05 0.06 936 154 62 64
R6 71098 19903 395 363 0.32 0.11 0.07 0.10 858 97 43 41
R7 3.1eb 83582 6656 8199 1.42 0.32 0.12 0.17 1040 81 56 50
R8 1.5e6 2.7e5 2.2e5 1.2e5 9.13 1.01 1.32 0.87 1453 138 58 59
R9 ¥¥* k2965 4.9e5 336.3 80.43 2.05 3.64 *¥*  xkx 77 80
R10 #Fk kkx % 96eb 496.3 71.83 38.87 2.20 Kk xkwk ek 199
M1 23894 31927 19063 12780 0.54 0.45 0.35 0.23 926 1349 129 74
M2 1.6e5 2.0e5 46545 46337 2.19 2.92 0.74 0.86 3717 7695 131 190
M3 68313 1.7e5 64522 42414 0.92 2.34 0.99 0.80 3589 5690 119 92
M4 2.0e5 5.8¢5 1.7e5 1.3e5 2.71 7.34 2.49 1.86 1441525819 146 105
N1 43655 42931 27275 1660 1.56 1.62 1.02 0.15 985 1803 187 194
N2 1.7e5 2.6e5 1.0e5 67168 5.61 9.43 3.55 2.16 4611 9279 218 138
N3 1.7eb 1.3eb 1.4eb 81804 5.85 4.96 4.99 2.69 3794 11656 178 130
N4 1.0e6 1.5e6 4.8e5 3.8e5 34.71 51.10 17.91 11.07 17851 41986 234 169
Cl 2512219263 871 810 0.24 0.24 0.30 0.49 1087 1442 188 191
C2 65275 68070 1600 2620 0.56 0.59 0.40 1.03 886 2032 203 206
C3 86439 97733 2481 2760 0.74 0.82 047 1.14 786 1663 204 198
C4 8.5eb5 9.8e5 22223 25206 6.52 6.90 0.91 1.83 1680 5419 247 297
C5 8.3e6 8.8¢6 1.6e5 1.6e5 66.41 66.85 2.90 3.97 1900 14163 322 350
C6 FFE FE 176 1.2¢6 1181 ** 18.32 14.87 ***  ** 480 404
C7 * ¥k 1.3e7T 1.3e7  * ** 0 156.1 1624 * ** 913 672
C8 * ¥ 1.4e7 1.2e7  * **163.0 155.3  * ** 1305 2210
Q9 * *k *k 3 6e7 ¥ *k k1046 * *ok *k 1020

* timeout; ** out of memory; *** timeout on some instances

passes grants downward. One additional process handles the requests of the root
node by immediately sending a grant upon receiving a request and then waiting
for the release. The benchmarks A2 — A6 contain arbiter trees of height 2 — 6,
with an exponentially growing number of processes (A2 has 8 processes, A6 has
128). We specified mutual exclusion for one particular pair of client processes
and introduced a fault in the form of an incorrect client that erroneously sends
several release signals when done.
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Table 2. Experimental results: Comparison of A* traversal using our estimate function
for two different bounds (V50 and N100) to A* traversal using the FSM estimate
function (FSM)

explored states seconds trace
Exp FSM N50 N100 FSM N50 N100 length
A2 498 215 46 0.02 0.06 0.10 25
A3 81883 32106 20658 0.41 048 0.73 35
H4 6289 3876 3348 0.06 0.08 0.10 105
H5 67202 52348 48361 0.29 0.32 0.36 229
H6 627669 540286 516242 2.46 2.80 2.82 481
H7 5.8e¢6 b5.4e6 5.3e6 27.08 32.29 31.48 989
R5 35784 4642 2392 0.15 0.06 0.08 27
R6 174589 6047 4295 0.69 0.07 0.12 22
R7 764727 14037 12083 3.30 0.16 0.20 27
R8 2.1e6 98420 60322 12.94 0.67 0.52 23
R9 ** 93806 70578 125.95 0.71 0.69 25
R10 ** 271935 279693 88.46 2.22 2.47 25
M1 50147 25103 23917 0.79 0.52 0.48 50
M2 223034 100513 94426 3.30 1.82 1.82 51
M3 231357 130747 129269 3.42 2.43 2.51 53
M4 971736 561599 516178 13.99 10.57 9.54 54
N1 99840 56550 52564 5.59 3.44 3.03 50
N2 446465 238369 218351 25.30 14.86 13.21 53
N3 473117 286506 257530 27.04 17.86 15.23 53
N4 2.0e6 1.2¢6 1.1e6 117.43 74.83 70.88 56
Cl 35768 13863 13455 0.37 0.42 0.62 55
C2 110593 38483 36888 0.99 0.76 1.37 55
C3 144199 44730 42366 1.27 091 1.54 55
C4 1.4e6 368813 354091 11.23 4.30 5.05 56
C5 1.3e7 2.8e6 2.7e6 116.28 29.60 29.97 57
C6 * 2.8e7  2.7e7 * 0 377.77 364.15 57

* (**%) out of memory (on some instances)

The error in a tree with 128 processes is found in approx. 1 minute using
a bound of 50 states. Because not all processes contribute to reaching an er-
ror state, this low bound already produces a well-informed heuristic. Using the
higher bound of 100 states is expensive: since in this benchmark the length of
the shortest error path is only linear in the height of the tree, computing the
estimate involves composing a large number of processes with few and therefore
large buckets. The more accurate estimate produced by N100 does, however,
lead to shorter error traces.

The Towers of Hanoi. Benchmarks H4 — H8 model the standard problem of
moving a stack of differently sized disks from one of three columns to another,
with the constraints that the disks may only be moved one at a time and a disk
may never be stacked on top of a smaller disk. We modeled the problem with
one process for each disk. A disk can at any time send a request upwards in the
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hierarchy of smaller disks to check whether itself and a target column is clear of
smaller disks. If it gets an “ok” signal, it moves from its current column to the
target column. To find a trace that leads to the target configuration we specify
the target configuration as the error condition. In this benchmark, the length of
the shortest error path grows exponentially with the number of processes. This
explains why the bound N100 performs significantly better than the bound N50
in the largest benchmark HS.

Randomly Generated Systems. We obtained a further suite of benchmarks by
randomly generating systems of processes. The parameters of the construction
are the number of processes, the minimum and maximum number of states of the
processes, and the seed for the random number generator (the Mersenne Twister
[15]). Excluded from the benchmarks are systems with no error paths and sys-
tems that contain independent subsystems, i.e., systems where the process graph,
with edges between processes that have shared actions, is not connected.

Benchmarks R5 — R10 each consist of 15 different randomly generated sys-
tems, with the size ranging from 5 (R5) to 10 (R10) processes. We set the
number of actions to twice the number of processes, the minimum/maximum
size to 3/10, and averaged the results over the 15 systems for each size. The only
method besides our estimate function that also finds the error in all systems
with 10 processes is rDF, which, however, takes significantly more time.

A* is usually much more expensive than best-first traversal. In this bench-
mark, however, A* results in a much more focused traversal, as the number of
visited states shows. As a result, A* even becomes faster than best-first traversal.

Industrial Examples. Henning Dierks provided us with a collection of UPPAAL
benchmarks from two industrial case studies: A real-time mutual exclusion pro-
tocol in a distributed system with asynchronous communication [3] (benchmarks
M1 — M4 and N1 — N4) and a tramway controller from the UniForM project [11]
(C1 - C9). The two case studies add real-time constraints and integer variables
to the discrete setting of the other benchmarks: the faults in both case studies
are introduced as erroneous time bounds. Even though our implementation is
not yet optimized for this type of system (in the computation of the estimate,
we simply ignore the clocks and use a flat representation of the integer values
as discrete states), the directed model checker performs remarkably well, solving
several benchmarks that were previously out of UPPAAL’s reach.

7 Related Work

Several researchers have investigated techniques to guide the model checker.
Typically, the guidance is application-specific and must be provided by the user.
For example, Behrmann et al [1] describe UPPAAL case studies in which a
dramatic reduction of the state space was achieved by a user-provided estimate
of the error distance. Bloem et al [2] use hints in the form of assertions on the
primary inputs and state variables of the model: the transition relation can then
be underapproximated (by ignoring transitions out of states that violate the
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hint) or overapproximated (by allowing any transition from a state that violates
the hint). Similarly, Kaltenbach and Misra [10] use hints in the form of regular
expressions over the actions of the program.

Directed model checking with an automatically computed estimate of the er-
ror distance has been pioneered by Edelkamp, Leue, and Lluch-Lafuente with the
tool HSF-SPIN [6]. In addition to several simpler heuristics for safety and live-
ness properties (including deadlock-detection), HSF-SPIN implements the FSM
heuristic [7]. The FSM heuristic approximates the error distance by the maxi-
mum (or, alternatively, the sum) of the error distances in individual processes
and is a significant improvement over program-independent estimates like the
Hamming-distance [20]. The drawback of the FSM heuristic is that it ignores the
synchronization between the processes. It is therefore less useful when searching
for errors that require a complex interaction between multiple processes.

Similar to our approach, the pattern databases of Qian and Nymeyer [17]
and the abstraction databases by Edelkamp and Lluch-Lafuente [5] also make
use of an abstraction of the system. The error distances in the abstract state
space are stored in a table, from which they are read off during the traversal
of the concrete state space. Our abstraction technique extends these methods:
while both pattern databases and abstraction databases assume that a partic-
ular abstraction function is chosen beforehand, we automatically compute an
abstraction function that aims at preserving the error distance.

Related to our incremental abstraction technique is the Incremental Compo-
sition and Reduction (ICR) Method [18], which reduces the partially composed
system after each composition of two processes to an observationally equivalent
process. Since ICR maintains an accurate representation of the behavior of the
partially composed system (which often requires more states than the completely
composed system), ICR is only feasible if the user provides additional constraints
on the process interaction [8]. By contrast, our method, which only maintains
an approximate representation of the behavior, is fully automatic.

In very recent work, Kupferschmid et al [12] investigate using an estimate
function from AI planning for directed model checking. The estimate is based on
a relaxation of the system in which every state variable, once it has obtained a
value, keeps that value forever. Because Kupferschmid et al’s estimate function
is computed on-the-fly, it can be used in systems with infinite data types (such
as unbounded integers), which are currently out of our scope. On the other
hand, our precomputed abstraction reflects the process synchronization more
accurately, which leads to much better performance in systems with complex
process interaction, such as the Towers of Hanoi benchmark (see Section 6).
There is obvious potential in a combination of the two approaches, which we
plan to explore in future work.

An important complement to directed model checking with estimates
of the error distance are structural heuristics as implemented in the Java
PathFinder [9]. These heuristics exploit the program structure for example by
maximizing thread interleavings and code coverage.
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8 Conclusion

Abstraction has always been considered a key in fighting the state explosion
problem. Here, we have given a new twist to abstraction. We traverse abstract
states in order to compute an estimate of the error distance, and then traverse
concrete states in order to find an error path. The quality of an abstraction is not
determined by a Boolean value (“does the abstraction preserve the reachability
of an error state by the initial state?”). It is rather determined by the ratio
between the estimated and the actual error distance.

While we are still in the beginning of the systematic design of such
abstractions, this paper has made an initial contribution. It presents a distance-
preserving abstraction for concurrent systems that allows one to compute an inter-
esting estimate of the error distance without hitting the state explosion problem.
As detailed in the paper, the definition of the abstraction originates from insights
into the interplay between the impact of an action-based synchronization mecha-
nism on the error distance in concurrent systems on the one hand and the use of
estimated error distances during the state space traversal on the other hand.

We have implemented the resulting directed model checking method, and we
have led a series of experiments that indicate the usefulness of an estimate that
takes into account synchronization.
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Fig. 6. Running time of the directed model checker for different bounds on the abstract
state space. (Data from a randomly generated system with eight processes.)
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With abstraction, one always encounters a tradeoff between cost and preci-
sion. A potential advantage of our abstraction method is that it is parameterized
(by the size of the abstract state space), and that one can fine-tune the para-
meter (and thus the accuracy of the abstraction). To demonstrate the tradeoff
on an example, we took a randomly generated system with eight processes and
changed the parameter gradually. Figure 6 shows the corresponding running
times. Initially, the runtime decreases with a increasing parameter. After the
sweet spot in the tradeoff is reached (in the region between 60 and 80), the run-
time increases with increasing parameter. More experience is needed in order to
provide systematic ways to choose the parameter.
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Abstract. There is a growing body of work on directed model checking, which
improves the falsification of safety properties by providing heuristic functions
that can guide the search quickly towards short error paths. Techniques of this
kind have also been made very successful in the area of Al Planning. Our main
technical contribution is the adaptation of the most successful heuristic function
from Al Planning to the model checking context, yielding a new heuristic for di-
rected model checking. The heuristic is based on solving an abstracted problem
in every search state. We adapt the abstraction and its solution to networks of
communicating automata annotated with (constraints and effects on) integer vari-
ables. Since our ultimate goal in this research is to also take into account clock
variables, as used in timed automata, our techniques are implemented inside UP-
PAAL. We run experiments in some toy benchmarks for timed automata, and in
two timed automata case studies originating from an industrial project. Compared
to both blind search and some previously proposed heuristic functions, we consis-
tently obtain significant, sometimes dramatic, search space reductions, resulting
in likewise strong reductions of runtime and memory requirements.

1 Introduction

When model checking safety properties, the ultimate goal is to prove the absence of
error states. However, to do so one has to explore the entire state space of the appli-
cation under consideration. It is therefore essential to use an efficient representation
and implementation of that state space. Prominent examples of such implementations
are the SPIN (e.g. [1]) and UPPAAL (e.g. [2]) tools. SPIN handles the Promela lan-
guage, describing systems of communicating processes. UPPAAL handles networks of
extended timed automata, which is a formalism with less complex communication than
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Promela, but where the processes can be annotated with real-valued clock variables.
Both languages also feature integer variables.

Enumerating the entire state space is often not feasible in practise. A potentially
much easier task is to only try to detect error states, i.e., to falsify the safety property. An
error may be found by exploring only a small fraction of the search space. Algorithms
that are good at detecting errors can be used for debugging purposes. They can even
be good for proving an application error-free, because they can be used to handle the
intermediate iterations in the abstraction refinement life cycle, i.e. those iterations in
which spurious error states exist.

There are two main issues to be addressed: first, the search space size, i.e. the num-
ber of search states that need to be considered before the error state is found; and second,
the length of the detected path to the error state. The search space size determines the
scalability of the search. Short error paths are preferred for debugging; in abstraction
refinement, they provide better information about what aspects of the abstraction should
be refined. Ideally, one wants an optimal, i.e. a shortest possible, path to an error.

Both search space size and error path length can be addressed by the order in that
the search states are explored. One defines a heuristic function h, a function that maps
states to integers, estimating the state’s distance to the nearest error state. The search
then gives a preference to states with lower h value. There are many different ways of
doing the latter, of which we consider the wide-spread methods A* search and greedy
search. In the former, search nodes s are explored by increasing value of ¢(s) + h(s)
where c¢(s) is the length of the search path on that s was reached. If h is admissible,
i.e., if it never overestimates the real distance to the nearest error state, then A* is
guaranteed to return an optimal error path. In greedy search, search nodes are explored
by increasing value of i(s). This gives no guarantee on the length of the detected error
path, but tends to explore less search states in practise.

The application of heuristic search to model checking was pioneered a few years ago
by Edelkamp et al [3,4], christening this research direction directed model checking,
and inspiring various other approaches of this sort, e.g. [5, 6, 7]. The main difference
between all the approaches is how they define and compute the heuristic function: How
does one estimate the distance to an error state? Different definitions make all the
difference because no heuristic can work well in all examples, and the best one can
hope to do is to define a range of heuristics that cover (work well in) an as large as
possible range of examples.

Edelkamp et al [3, 4] work in the context of SPIN. They propose to base the distance
estimation on the graph-distances within each single process. For process i, let d(7) be
the distance of ¢’s start location to its target location, when ignoring all edge guards
(if there is no target location, set d(¢) := 0). Then an admissible heuristic function,
called d%, is defined as max;d(i), and a non-admissible heuristic function, called dv,
is defined as ), d(i). We implemented these heuristic functions in UPPAAL, taking
the d(4) to be the graph distances in the individual automata.

Note that d” and dY are rather crude approximations of the system semantics.
They completely ignore communication and integer variables. Our main contribution
in this paper is an approximation technique that does not do that. The approximation
is more costly — i.e., computing the heuristic function takes more runtime than what
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is needed for d¥ and dU — but, as we will see, this often pays off in terms of much
smaller search spaces. We obtain our approximation by adapting the most successful
heuristic method [8, 9] from the area of Al Planning, where heuristic search has been
overwhelmingly successful in the past decade, in particular winning all the planning
competitions (e.g. [9, 10, 11]).

The heuristic method is based on what Al people call a relaxation, which is the same
as the model checking term abstraction: an over-approximation. The abstraction tech-
nique used is, however, quite different from what one usually uses in model checking,
due to the very different way of using the abstracted task. Namely, the heuristic val-
ues are generated by solving the abstract problem in every search state, and taking the
length of the abstract solution as the distance estimate. To be able to solve the abstract
problem in every search state, of course the abstraction has to be very coarse. In our
particular case, the abstraction assumes that every state variable, once it has obtained a
value, keeps that value forever. Which means, in the abstraction the “value” of any vari-
able at any time point is not a member but a subset of the variable’s domain. The subsets
grow monotonically as abstract transitions are taken. We prove that, like in the planning
context, solving the abstract problem optimally, i.e., finding an optimal abstract error
path, and thereby computing an admissible heuristic function, is still NP-hard, even if
the addressed formalism allows only parallel automata with communication. For paral-
lel automata with communication and integer variables, we define two polynomial-time
methods for approximating the length of an optimal abstract error path. We call the re-
sulting heuristic functions h” and hV. The former is a lower bound on the length of an
optimal abstract error path, the latter is an upper bound on that length; A” is admissible,
RY is not.

Our heuristics are implemented inside the UPPAAL system, since our goal in this
research is to speed up model checking of (networks of extended) timed automata.
Ultimately, of course, we want to develop heuristics that also take into account the
clock variables. We are currently investigating that direction; it is highly non-trivial in
our context due to the nature of our abstraction. Since timed transitions are continuous,
the value subset of a clock x will be [0, 00) as soon as one reaches a location without an
invariant limiting x; we discuss this in more detail below. As said, so far we can offer
heuristics that take into account communication and integer variables. To the best of our
knowledge, no similar heuristics were developed in any other area of model checking
(the differences to the existing other heuristics are outlined in the related work section).

In the standard versions of UPPAAL, the search order can be fixed to either depth-
first (DF) or breadth-first (BF).! We test our implementation in networks of extended
timed automata. We consider a few toy examples, and two realistic case studies coming
from an industrial project. We evaluate the performance of different UPPAAL config-
urations finding optimal error paths, and of UPPAAL configurations finding (possibly)
sub-optimal error paths. The former are BF, and A* with h” or d”; the latter are ran-
domised DF, and greedy search with h”, hY, d”, and dV (remember that d* and dV

! There is also a version doing heuristic search [12], but for that the user has to provide the
heuristic function manually, in difference to our fully-automatic technology. Note that a suc-
cessful manual heuristic specification requires inside knowledge on the side of the user, and
careful tuning.
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were defined by Edelkamp et al [4]). Of the optimal configurations, BF and A* with dr
perform roughly similarly except in the toy examples; A* with h” brings a moderate
runtime advantage, but much smaller search spaces, enabling success in one more ex-
ample due to the lower memory usage. For the (potentially) sub-optimal configurations,
our results are much stronger. While the d” and dY search orders bring hardly any ad-
vantage over DF in our industrial case studies, both h” and hY yield dramatic search
space reductions, and with that better runtimes and the ability to solve more examples.
At the same time, the error paths found with h” and AU are orders of magnitude shorter
than those found with DF, d~, and dv .

The next section briefly gives our notations. Sections 3 and 4 formally define the
abstraction used, and the algorithms computing the heuristic functions, respectively.
Section 5 describes our empirical results, Section 6 discusses related work. Section 7
closes the paper. Most proofs are replaced in the text by short proof sketches; the full
proofs are available in a technical report [13].

2 Notations

We assume the reader is roughly familiar with timed automata and their commonly used
extensions. We give a brief description of the particular formalism treated in our current
implementation. We use (a slight variation of) the terminology and notation given by
Behrmann et al [14].

We treat networks of timed automata with binary synchronisation and integer vari-
ables. For the sake of presentation herein, we restrict atomic expressions over integer
variables to variables, variable increments/decrements, or constants. That is, we allow
only comparisons like v < v or v = ¢, and assignments like v := v/, v := c or
v := v £ 1. Our implementation in fact deals with arbitrary linear expressions over
the variables; for the sake of readability, we omit these and only explain the extensions
in the text. As mentioned earlier, the heuristic function so far completely ignores the
clock variables (the reasons for this are explained in Section 3.2). We therefore don’t
give formal notations for these variables. Our notations are as follows. The timed au-
tomata share a set A of actions, and a set V' of integer variables. Each v € V has a
domain dom(v). Each automaton 4 has a location set L(7), a start location [°(i), and
a set of edges E(i). Each edge is annotated with an action a € A, with a guard g,
and with an effect f. The guard is a conjunction of conditions of the form x 1 y
where z,y € Z UV and e {<,<,=,>,>, #}. The effect is a list of assignments
of the form v := v/, v := corv := v £ 1, where v,v' € V and ¢ € Z. Each vari-
able v occurs on the left hand side of at most one such assignment. The semantics are
defined as obvious. Transitions are asynchronous and triggered by an edge annotated
with a special void action, or synchronous and triggered by two edges with inverse
actions.

The safety properties we can verify take the form of (negated) edge guards plus
location vectors, i.e., our implementation can check whether there exists a reachable
state in that the automata are in specified locations, and that satisfies a conjunction of
conditions = > y. We call the former the target locations, and the latter the target
formula. A path of transitions is called a solution if it leads from the start state to a state
complying with target locations and target formula.
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3 Abstraction

We introduce the abstraction method, called monotonicity abstraction, underlying our
implemented heuristic function. We first give a high-level description of the abstraction
in a generic way, then we define it as currently used in the context of networks of
automata.

Before we start, let us remark that the monotonicity abstraction was first invented
in Al Planning for a formalism called STRIPS, under the name “ignoring delete lists”
[8]. In STRIPS, the “delete lists” are effect instructions that make a boolean variable
FALSE. This simplifies the problem because, in STRIPS, variables are only ever re-
quired to be TRUE. The monotonicity abstraction we describe below is a generalisation
of this abstraction approach. We remark that the generalisation is not published in the
Al Planning literature; it is, in spirit, somewhat similar to the framework presented
in [15].

3.1 The Monotonicity Abstraction

The abstraction is based on the simplifying assumption that every state variable, once
it obtained a value, keeps that value forever. The value of a variable is no longer an
element, but a subset of its domain. That subset grows monotonically over transition
applications — hence the name of the abstraction.

In a little more detail, in general a transition system (a planning task, a system of
timed automata, a piece of program code, etc.) can be viewed as given by a set of state
variables, a set of transition rules, a start state, and a target formula. The transition rules
have a guard — a formula out of some class of valid (non-temporal) formulas — and an
effect — an instruction how the variable values change when the rule is applied. States
are value assignments to the variables, the target formula is a valid formula. A solution
is a path of transitions that, when applied to the start state, ends in a state that satisfies
the target formula.

Under the monotonicity abstraction, the semantics of a transition system as above
are changed as follows. States now map each variable to a subset of its domain. The start
assignment contains the single value assigned by the start state. A formula evaluates to
TRUE in a state if there exists a variable value vector in the state so that the formula
evaluates to TRUE when inserting these values. Executing an effect instruction becomes
a set union operation, where the new value of each variable z is its old value (a domain
subset) plus the new value assigned by the effect. If the effect outcome depends on
variables, then all possible value vectors for these variables are used, each yielding a
value for z.

E.g., say we have one integer variable v, and one transition with guard v = 0
and effect v := v + 1. The start state is v = 0, and the target formula is v = 2.
Obviously, there is no solution. There is, however, a solution in the abstraction. The
start assignment is {0}. After one transition, this becomes {0, 1}. Since the transition
guard is abstracted to ¢ € s(v) : ¢ = 0, the transition can be applied a second time,
and we get the state {0, 1,2}: the new values obtained for v are 1 (inserting 0 into the
effect right hand side) and 2 (inserting 1). In this state the abstract target formula, taking
the form 3¢ € s(v) : ¢ = 2, evaluates to TRUE.
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It is not difficult to see that the monotonicity abstraction induces an over-approxima-
tion of the real transition system: every solution path in the real system corresponds to
a solution path in the abstract system. We will state this formally below, for our abstrac-
tion of timed automata. In many cases, deciding solution existence is a polynomial-time
problem under the abstraction, making it feasible to solve the abstract problem in every
search state.”

3.2 The Monotonicity Abstraction in Timed Automata

Before we give our definitions, consider at a higher level of abstraction what happens
if we apply the above abstraction to a system of timed automata. Under the abstraction,
each automaton will (potentially) be in several locations in a state. The integer variables
will have several possible values in a state. The clock variables will only accumulate
new values. Transitions will be applicable as soon as one of the possible value vectors
satisfies the guard.

Thinking a little more about the clocks, one sees that they are likely to trivialise
very quickly under the abstraction. The reason for that are the timed transitions: as time
passes, the clocks accumulate all the passing time points. After waiting from time point
u to time point u + d, the new clock value subsets contain the entire interval [u, u + d].
So in a location with invariant I, the clock value subsets immediately gather all values
up to the upper bound specified by I. Now, all clock values are 0O initially. Since time
passes continually, therefore the clock value subsets will always have the form [0, maz]
(where max is the latest time point yet reached), containing no information other than
maz. As soon as a location with empty invariant is reached, max will become infinite,
i.e., the clock value subsets will be the entire time line.

For the above, reasoning about clock values under the abstraction is not likely to
contribute useful information, unless additional techniques are used. We outline an idea
for such additional techniques in Section 7. For now, we ignore the clocks altogether
(inside the heuristic function). While this is undesirable, as said our empirical results
demonstrate that taking (abstract) account of automaton locations, synchronisation, and
integer variables can yield useful search guidance.

Our definitions are straightforward and read as follows. We denote abstract con-
structs with a superscribed T to indicate the additivity of the abstraction. An abstract
state st assigns each automaton 4 a location subset s™ (i) C L(i). Each integer vari-
able v is assigned a value set s*(v) C dom(v). Formulas (conjunctions of conditions)
are abstract by, “locally”, existentially quantifying the variables in each condition sep-
arately. B.g. a formula v >y v/ A v g ¢ is abstracted to 3¢y € sT(v), ¢} € sT(v') :
c1 >y ¢ A e € sT(v) 1 ca iy c. That is, we allow achievement of each condition
in separate. When, “globally”, quantifying the variables over the entire formula, one
gets an NP-complete constraint problem, so there is no way around making further ab-
stractions. We chose to do local quantification mainly because it is very simple and can
be implemented efficiently. Also, it comes in handy also for linear arithmetic. When

2 Under certain conditions, checking satisfaction of a formula becomes NP-hard in the abstrac-
tion, due to the additional existential quantification. In particular, this is the case in our context
of timed automata. We make an additional simplification to get around this, see the explanation
below.
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allowing linear arithmetic between integer variables, checking even a single condition
3% : f(Z) = cis NP-hard. This isn’t usually a problem since the number of variables in
the expressions (f()) is typically small, up to four maybe.? However, the total number
of variables in a conjunction of expressions can become quite big. So it is convenient to
address the single expressions in separate.

An assignment v := ¢ results in sT(v) := s (v) U {c}. An assignment v := v’
results in s7(v) := st (v) U sT(v'). An assignment v := v + 1 results in s7(v) :=
st(w)yU{c+1|cest(v)},v:=v—1lresultsin st (v) :=sT(v)U{c—1|ce
st (v)}. Values not contained in dom(v) are removed from the result. An asynchronous
transition of automaton 7 from location [ to !” is enabled if [ € sT (i), and the respective
abstract edge guard holds in s™. The effect assignments are executed as above, and
st(i) :== st (i) U{l'} is set. A synchronous transition of automaton 7 from location I(3)
to I’(4), and of automaton j from location I(5) to I’(5), is enabled if [(i) € s* (i), 1(j) €
s%(4), and both respective abstract edge guards hold in s™. The effect assignments are
executed as above, and st (7) := st (7) U {I'(i) }as well as st (j) := st (j) U{U'(j)}
are set.

When the start state is sg, sg is given by si (i) = {s0(i)}, and s{ (v) = {s0(v)}.
A path of successively enabled transitions from sq is a abstract solution if it ends in a
state s* in which the abstract target formula holds.

Proposition 1. Given a network of timed automata with binary synchronisation and

integer variables, a start state, target locations, and a target formula. If t1,...,t, isa
solution then t1, . ..ty is also an abstract solution.
Proof Sketch: The variable values achieved by ¢, ...,t, in the abstraction subsume

the values achieved in reality.

By Proposition 1, every solution in the real search space is also contained in the abstract
search space. So the length of an optimal abstract solution is an admissible heuristic
function. We will come back to this below.

Consider Figure 1 as an example. The top automaton needs to go through repeated
circles. More precisely, if the bottom automaton has n locations, then the real solution
takes 2(n — 1) steps, half of which are synchronized between both automata. However,
an abstract solution can be obtained in only n steps: the top automaton goes to the right
once, and can then go to the left n times in sequence since its right location remains in

the reached location subset.
—_— }Ha{] O ° ° ° OL@)

Fig. 1. A simple example where h” and hV deliver bad heuristic values

3 Also, one can handle the expressions in an incremental way, see Section 4.
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We can decide in polynomial time if there exists an abstract solution or not.

Theorem 1. Let TASolEx™ denote the following problem. Given a network of timed au-
tomata with binary synchronisation and integer variables, a start state, target locations,
and a target formula. Is there a abstract solution?

TASolEx™ is in P.

Proof: A polynomial solution algorithm is described in Section 4.

The polynomial solution algorithm forms the basis of our heuristic functions: for a
heuristic function, what we want to know is not primarily if there is an abstract solu-
tion, but what the length of an abstract solution is (if there is one). Abstract solutions
may contain arbitrarily many useless transitions, and we want to know what an optimal
abstract solution is. We call the length of such a solution, for a state s, h+(s). Unfortu-
nately, computing h ™ is still hard.

Proposition 2. Let TASolMin™ denote the following problem. Given a network of timed
automata with binary synchronisation, a start state, a target formula, and an integer b.
Is there an abstract solution of length at most b?

TASolMin™ is NP-hard.

Proof Sketch: By a straightforward reduction of 3SAT, using one automaton per clause
and variable.

Note that one does not even need integer variables in the proof to Proposition 2. The
desired admissible heuristic function AT, based on our abstraction, can not be computed
efficiently. So, in practise, we will have to approximate h™. We introduce two approxi-
mation techniques in the next section, one computing a lower bound, and one computing
an upper bound. Both are implemented as heuristic functions inside UPPAAL.

4 Approximating h™

Our heuristic functions map search states to integers. For each state s during search,
we are facing the following situation. We are given a network of timed automata, target
locations, and a target formula. The start state is s. We want to approximate the length
of an optimal abstract solution.

Both approximations are based on a forward-chaining algorithm that generalises
algorithms proposed in the context of numeric planning [16]. The algorithm is a forward
fixpoint computation. It determines in polynomial time if there is a abstract solution, by
building a data structure called abstract transition graph, short ATG. The ATG is a
layered graph encoding reachability information. Pseudo-code is given in Figure 2.

The ATG is a sequence of location sets L (i) and of variable value sets Vj(v): the
graph layers. The algorithm builds these in an incremental way, so that their contents
increase monotonically over k. Satisfaction of a formula, and enabled transitions, are
defined in the obvious manner analogous to abstract states. In each iteration of the
algorithm, for every enabled transition the respective new values are put into the sets.
For the example from Figure 1, if the top automaton has locations ¢; (left) and ¢5 (right),
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k:=0, Lo(7) := {s(4)} for all i, Vo (v) := {s(v)} for all v
while target locations are not in Ly, or V}, does not model abstract target formula do
Li+1(2) := Li(2) for all 4, Vi1 (v) := Vi (v) for all v
for all transitions ¢ enabled by Ly and V}, do
Ly11(i) :== Li+1(2) U {1(?)"} where t goes to [(4)’ in automaton ¢
if ¢ synchronously also goes to I(j)’ in automaton j then
Lit1(j) = L1 (5) U {I(5)"}
endif
if v := cis an effect of ¢ then Vi 1(v) := Viy1(v) U {c} endif
if v := v’ is an effect of ¢ then V41 (v) := Vig1(v) U Vi (v') endif
if v := v + 1 is an effect of ¢ then Vi1 (v) := [min(Vi(v)), o] endif
if v := v — 1 is an effect of ¢ then Vi1 (v) := [—o0, maz(Vi(v))] endif
endfor
if Lyy1(2) = Li(2) for all ¢, and Vi41(v) = Vi (v) for all v then
minlayer := oo, stop
endif
k=k+1
endwhile
minlayer .= k

Fig. 2. Building an abstract transition graph (ATG)

and the bottom automaton has locations b1, . . ., b, (from left to right), then Lo (top) =
{t1}, Lo(bottom) = {b1}, L1(top) = {t1,t2}, and Ly (bottom) = {b1}; for2 < k <
n, we get Ly (top) = {t1,t2} and Ly (bottom) = {by, ..., bi}. In L, (bottom) we have
the target location and the algorithm stops.

The treatment of v := v + 1 and v := v — 1 effects is slightly more complicated,
using a sort of “shortcut” to avoid the repeated incremental increasing (decreasing) of
a variable up to (down to) a needed value n (which could take a number of iterations
exponential in the representation of n). Setting a border of a Vi (v) interval to oo is
interpreted as telling us that arbitrarily high/low values can now be reached for v, by
applying the respective effect.

It is important to note that the Vj(v) sets can always be represented using only a
number of values polynomial in the size of the input task, i.e. one does not need to
explicitly enumerate all values in the reachable interval. If one of the bounds is infi-
nite, one just records that plus the value at which the continuous region ends. In more
detail, one can represent Vj,(v) by an ordered list of possible values, plus a marker at
the lowest and highest value, indicating if or if not below/above the bound there is an
infinite region inside Vi (v). The values in the explicitly stored list can originate from
v := c assignments only, so their number is bounded by the number of such assign-
ments in the input. It should be self-explanatory how this representation corresponds to
the pseudo-code given in Figure 2. The representation of each Ly (¢) and V(v) is poly-
nomial. Satisfaction of an abstract formula in L and V}, can be tested in polynomial
time processing the — at most binary — single conditions in the formula in turn; a condi-
tion on variables v and v" can be tested by, at most, processing the product of V}(v) and
Vi (v'). Finally, after a polynomial number of iterations, Ly, and V}, will not change any-
more, or reach the respective full sets of locations/values. So altogether the algorithm
terminates in polynomial time. It encodes admissible reachability information.
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Lemma 1. Given a network of timed automata with binary synchronisation and integer
variables, a start state, target locations, and a target formula. If there is an abstract
solution of length n, then the algorithm in Figure 2 stops successfully in an iteration
mainlayer < n.

Proof Sketch: When building the ATG without stopping criteria, the abstract solution
t1,...,t, is a sub-sequence of the ATG, i.e., tj is enabled by Ly_; and Vj_;. The
effects of ¢; are over-approximated and contained in Ly, and V.

In particular, if the ATG terminates unsuccessfully, then there is no abstract solution.
It is easy to see that, if the targets are reached in layer minlayer, then an abstract
solution can be constructed as the sequence, for k = 0, ..., minlayer — 1, of all transi-
tions enabled by L and V}. So altogether the ATG is a polynomial procedure deciding
existence of an abstract solution, and Theorem 1 follows.

Extending the ATG to deal with linear arithmetic over the integer variables does not
require a lot of deep thought, but results in rather unreadable algorithm specifications.
As said, testing 37 : f(Z) = cis NP-hard for linear expressions f (), but the number of
variables in Z is typically small. Our main algorithmic trick to deal with the expressions
efficiently is an incremental computation. If, at some point during building the ATG, we
want to know whether 3% : f(Z) = cis true based on the current value subsets (V}), then
we can refer back to the last time we asked that same question, and just take account of how
the value subsets have changed since then. In fact, we just keep a flag at each expression
occuring in the input, saying if or if not the expression can be satisfied yet. Every
time the value subset of a variable occuring in the expression changes (grows), we see
whether that change serves to satisfy the expression; if so, we set the flag. Checking guard
satisfaction in the ATG then simply means to refer to the flags. Similarly, one can deal with
linear expression effect right hand sides, v := f(Z). We just enumerate the set of value
tuples for z, referring back to the previous version of that set. Typically, just one or two
variables in f(Z) have gathered new values since the last evaluation of f(Z). It suffices to
enumerate these changes and extend the old tuple set correspondingly. The only thing that
becomes complicated is the “infinity shortcut” used in Figure 2to encode arbitrarily many
applications of simple increments (and decrements) of the formv := v+ 1 (v :=v—1).
If, for example, the effect is v := v 4+ v" where Vj,_1 (v") = {2, 5}, then the “shortcut”
would have to be Vj11(v) := Vi (v) U{c+2a+5b | ¢ € Vi(v),a,b € N}. Obviously,
this gets quite complicated for general effects v := f(Z), so we did not implement a
shortcut there and always just insert the new values that can be reached with a single step,
paying the prize of multiple ATG layers for multiple effect applications; usually this is
benign. Note that the incremental approach can be implemented for (almost) arbitrarily
complicated expressions, not only linear ones.

Let us focus again on how to approximate h*. As said, we compute a lower bound
as well as an upper bound. We call the lower bound h”, and the upper bound hY. By
Proposition 1, a lower bound on h™ is the minlayer value determined by the ATG
algorithm. We set h”(s) to that value as computed by the ATG for s. Regarding an
upper bound, note that, with the above, the number of all transitions enabled at layers
k =0,...,minlayer — 1 provides such a bound. However, this bound is likely to be
far too generous, counting transitions that are reachable but not needed to achieve the
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Fig. 3. A simple example where h” and hV deliver the precise error state distance

targets. We therefore use a more involved method to determine our upper bound AV . The
method basically selects, at each layer k = 0, . . ., minlayer —1, a subset of the enabled
transitions, so that the sequence of the selected transitions is still an abstract solution.
This is done by a backward-chaining procedure on the ATG. For space reasons, and
since the details are not overly important here, we don’t describe the procedure in detail
and refer to the TR [13]. The selected abstract solution is not necessarily optimal, and
we set AU to its length. Both AV and h’” have the value oo in case there is no abstract
solution (implying with Proposition 1 that there is no real solution either).

Figure 3 gives another example. In the start state, all automata are in the bottom
location. The error state is to reach the top left locations. In each automaton except the
first one, one has two choices, one of which leads into a dead end (a state from which the
error can not be reached), since the required communication signal won’t be available
anymore. Built for the start state, each layer k of the ATG corresponds exactly to the
locations that can be reached within & steps — in particular, the top left location in the
kth automaton from the left. So minlayer = n, and hL = hY = nis the precise error
state distance. If, during search, a wrong decision was made in automaton ¢, then the
top left location in ¢ does not appear in the ATG, and the heuristic value is co. So all
dead ends are excluded from the search space. In contrast, d* = 2 and dV = 2n — 1
for the start state, and no dead ends are detected. Another example where hL and KV
are precise is, e.g., a situation that requires (only) to repeatedly increment an integer
variable. Intuitively, h” and hV are good at detecting long sequences of transitions that
build upon each other to achieve some target, and at finding out that such a sequence
is not available. What they are not good at is to see that the same thing has to be done
multiple times* — under the monotonicity abstraction, everything needs to be done at
most once. A bad situation was given earlier in Figure 1, where the top automaton needs
to go through repeated circles, while h” and hY act as if a single circle is sufficient.

5 Results

We ran experiments on an Intel Xeon 3.06 Ghz system with 4 GByte of RAM. As
said, our configurations finding optimal error paths are UPPAAL’s standard BF, and
A* search with h” or d*. Our sub-optimal configurations are UPPAAL’s standard ran-
domised DF, short ¥DF (which is by far the most efficient standard method across many
examples, including ours), and greedy search with any of h”, RV, d”, and dY.

* When repeatedly incrementing a variable, every increment has a different effect.
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Table 1. Experimental results for the sub-optimal configurations rDF, greedy search with A, and
greedy search with hY. Abbreviations: a number of automata, ¢ number of clocks, v number of
variables, ¢ runtime in seconds, .S search space size (number of visited states, “e+xz” means -10%),
M peak memory used in MByte (“G” GByte), ! length of detected error path (“K” thousand).
Dashes indicate out of memory.

t S M l
Exp a ¢ v tDF h* RY F n* KU tDF AY KV DF KY AV
F& 551 00 00 00 526 27 3 3 1 1 161 9 9
F{, 1010 1 04 00 00 6371 42 54 7 1 1109 9 9
FL 1515 1 1.3 0.0 0.0 20010 57 74 10 1 12356 9 9
FZ 551 00 00 00 35 612 74 2 1 1 114 13 18
F§, 1010 1 05 08 0.0 7885 55866 274 7 11 11363 29 33
FE 1515 1 3.8 403 0.0 58793 1.5e+6 599 18 75 1 6956 367 48
FS 55 2 00 00 00 63 22 23 1 1 1 23 71 1
F$, 1010 2 00 0.0 00 205 37 38 11 1 37 71 7
FG 1515 2 00 0.0 00 692 52 53 1 1 1 8 71 17

M: 3 411 08 0.1 02 29607 5656 14679 7 1 9 1072 169 120
Mz 4 413 3.1 03 0.8 118341 30742 67398 10 11 11 3875 431 142
Mz 4 413 28 02 0.8 102883 18431 75976 9 10 11 3727 231 158
My 5 415 127 0.8 2.5 543238 76785230466 22 13 16 15K 731 185
N, 3 711 19 05 08 41218 16335 25577 7 10 10 1116 396 157
Ny 4 713 93 24 3.8 199631 88537 134444 13 13 13 4775 990 241
N3 4 713 84 0.6 4.0 195886 28889 143969 12 11 13 3938 324 228
Ns 5 715409 5.119.2 878706 240366 758167 39 20 31 18K 1671 282
C: 5 312 08 02 02 25219 2339 3021 7 9 10 1056 95 87
C: 6 314 10 03 05 65388 5090 7484 & 10 10 875 86 100
Cs 6 315 1.1 05 0.6 85940 6681 8259 10 10 10 760 109 101
Cy 7 317 84 25 3.8 892327 40147 65781 43 11 13 1644 125 140
Cs 8 319 724 13.216.7 8.0e+6 237600 333692 295 21 23 2425 393 218
Cs 9 321 - 10.1 94.7 —207845 8.7e+6 - 20 223 — 309 1000
Cr 10 323 - 169 836 — 2.7e+7 9.2e+7 - 5952.1G — 1506 4630
Cs 10 324 - 145 932 — 331733 9.8e+7 - 232.3G - 686 16K
Co 10 325 -1198 - — 1.3e+8 - =25G - - 18K -

In the sub-optimal configurations, we use a bitstate hashing technique. This is a ta-
ble with N entries, containing heuristic values, indexed by hash values of search states.
Initially all table entries are empty. If the table entry for a new search state already con-
tains a value, then that value is returned. Otherwise, the heuristic value is computed and
stored in the table. This is a greedy method to bound the number of calls of the heuristic
computation. After some limited experimentation, we set N to 256,000 in the reported
experiments.’

> For very small values of N, around 10,000, we observed many “outliers”, i.e., examples where
search took several orders of magnitude shorter or longer when using the bitstate hashing. For
larger N values, the behaviour becomes more stable, and most of the time gives a speedup
factor of around 2 to 10 in our examples.
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Table 2. Experimental results for greedy search with d” and dV. Abbreviations as in Table 1.

t S M l

Exp a ¢ v d¥ dv dr dv g av  dF Qv
F& 551 00 00 80 80 1 1 21 21
Fi{, 1010 1 00 00 130 130 1 1 21 21
F4 1515 1 00 00 180 180 1 1 21 21
FZ 551 00 00 1300 22 1 1 58 7
FZ 1010 1 247 0.0 1.5¢+6 38 81 1 42K 7
F% 1515 1 372 0.0 1.5¢+6 53277 1 112K 7
M: 3 411 04 05 31927 39288 10 10 1349 1695
My 4 413 28400 203051 3.4e+6 17 150 7695 183K
Ms 4 413 22 1.5 174655130580 14 14 5690 5412
Ms 5 415 6.865.7 579494 6.0e+6 33 445 25K 668K
N: 3 711 1.6 13 42931 36858 10 10 1803 1601
No 4 713 9.1 124 264930 5.1e+6 20289 9279 366K
Ns 4 713 48774 134798 2.6e+6 19218 11K 127K
Ny 5 715 494 181 1.5e+6 6.7e+6 74234 41K 127K
C: 5312 02 02 19263 19628 10 10 977 987
C: 6 314 05 04 68070 60618 12 12 1501 830
Cs 6 315 07 06 97733 86474 14 14 1238 856
Cs 7 317 63 5.6 979581 854090 47 45 4510 1906
Cs 8 319 61.758.6 8.8c+6 8.3e+6 306 306 12K 8943
Cé 9 321 - - - - - - - -

The tool executable and our benchmark examples are available for download from
http://www.informatik.uni-freiburg.de/ kupfersc/spin/. The data for
the sub-optimal configurations are in Table 1 (rDF, h”, and hV) and Table 2 (d* and
dY). The data for the optimal configurations are in Table 3. Below, we first explain the
examples used, then we discuss the results.

We use three variants of the Fischer protocol for mutual exclusion. The examples
are “FZX ”” in the tables, where X is A, B, or C, and i is the number of parallel automata.
The error condition is that at least two of the automata are in a certain location simul-
taneously. We made the error possible by weakening one of the temporal conditions in
the automata (from “>” to “>"). The variants differ in the way they encode the error
condition. Variant A adds additional automata with synchronisation. Variant B selects
and specifies two of the automata for the error condition. Variant C introduces a variable
specifying the number of automata in the error location.

The other examples in the tables are from two more realistic case studies. Examples
“M;” and “N;”, ¢ = 1,...,4, come from a study called “Mutual Exclusion”. This
study models a real-time protocol to ensure mutual exclusion of states in a distributed
system via asynchronous communication. The protocol is described in full detail in
[17]. By increasing an upper time bound in the model we got a flawed specification
that we transformed into its timed automata semantics by applying various abstractions
techniques. The resulting models do not have many automata but a non-trivial amount
of clocks and variables.
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Table 3. Experimental results for our optimal configurations, i.e., BF, A* search with K%, and A*
search with d”. Abbreviations as in Table 1, na means not applicable.

t S M l
Exp a ¢ v BF hl dFf BF  hAf d¥* BF hl dF
F& 551 00 00 00 1467 207 1457 6 1 1 9
Fi, 1010 1 05 00 0.6 37942 2022 37922 8 1 8 9
FL 1515 1 7.8 03 7.8 348827 9187348797 31 10 32 9
FZ 551 00 00 00 362 138 242 1 1 1 7
FE 1010 1 00 0.0 00 5422 1768 2352 1 1 1 7
FE 1515 1 06 02 02 34307 8648 10437 7 11 6 7
F¢ 552 00 00 na 362 130 na 1 1 na 7
F{, 1010 2 0.0 0.0 na 5442 755 na 1 1 na 7
F{ 1515 2 0.6 0.0 na 34307 2255 na 7 1 na 7
M; 3 411 0.8 03 0.8 50001 24035 50147 7 7 750
Mx 4 413 3.1 1.4 3.4 223662 101253 223034 11 10 10 51
Ms 4 413 33 1.6 3.4 234587 115008 231357 11 10 10 53
My 5 415 13.6 6.4 14.5 990513 468127 971736 29 22 25 54
N: 3 711 52 32 5.6 100183 59573 99840 9 9 850
Ny 4 713 25.6 15.1 25.5 442556 273235 446465 18 15 15 53
Ns 4 713 264 16.727.2 476622 301963 473117 17 15 15 53
Ny 5 715 120 77.4 119 2.0e+6 1.3e+6 2.0e+6 65 39 45 56
C: 5 312 03 0.7 03 35325 17570 35768 7 9 755
Cy 6 314 09 1.7 1.0 109583 46495110593 10 12 10 55
Cs 6 315 1.2 2.1 1.3 143013 53081 144199 11 13 11 55
Cs 7 317 10.8 169 12.2 1.4e+6 451755 1.4e+6 78 49 51 56
Cs 8 319 114 128 123 1.2e+7 3.4e+6 1.2e+7 574 322377 57
Ce 9 321 - 1328 - — 3.2e+7 - =27G -57

Examples “C;”, 1 = 1,...,9, come from a case study called “Single-tracked Line

Segment”. This study stems from an industrial project partner of the UniForM-project
[18] and the problem is to design a distributed real-time controller for a segment of
tracks where trams share a piece of track. A distributed controller was modeled in
terms of PLC-Automata [17, 18], an automata-like notation for real-time programs. The
PLC-Automata were translated into timed automata with the tool Moby/RT [19]. The
property to be checked requires that never both directions are given permission to enter
the shared segment simultaneously. This property is ensured by 3 PLC-Automata of the
whole controller. We injected an error by manipulating a delay such that the asynchro-
nous communication between these automata is faulty. In Moby/RT abstractions are
offered for the translation into the timed automata. The given set of PLC-Automata had
eight input variables and we constructed nine models with decreasing size by abstract-
ing more and more of these inputs.

The results in Tables 1 and 2 clearly demonstrate the potential of our heuristic func-
tions. Consider Table 1 first. Except in FZ (where h” behaves very badly), and F{
(where no approach needs any time), the heuristic searches consistently find the error
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paths much faster. Due to the reduced search space size and memory requirements, they
can solve more of the large C; examples. At the same time, they find much, by orders

of magnitude, shorter error paths in all cases. In FB, hL does worse than hU because

K3
its heuristic value does not improve if only one of the two target automata moves closer
to its destination: the ATG becomes shorter only if both get closer. The somewhat odd
behaviour of A% in Cg, where search is a lot faster than in Cy, is an outlier caused by
the bitstate hashing (outliers suggest a direction for future work discussed in Section 7).

Considering Table 2, we observe that, using d” and dV in greedy search, except
in the Fischer variants the search space sizes and runtimes one gets are similar to that
of rDF, in most cases somewhat worse. The error paths are longer (up to two orders
of magnitude) than those found by rDF, except in Fischer variant A. The heuristics
can’t handle Fischer variant C' — the target condition is not expressed in terms of target
locations — which is, for that reason, left out of the table. In variant B, similarly to KL,
d* fails quickly. In variant A, due to the construction both d* and dV are constantly 1,
and the search spaces are identical to those of a non-randomised DF.

The results for the optimal configurations, Table 3, demonstrate that hL also has
some potential to improve the finding of optimal error paths, if to a lesser extent than
in the sub-optimal setting. A* with A% has the smallest search spaces in all cases, and
the best runtimes in all cases except the large C; examples, of which it can solve more
than the other configurations due to the lower memory requirements. The d” heuristic,
on the other hand, most of the time yields performance very similar to that of BE. None
of the configurations could solve C7, Cy, or Cy.

6 Related Work

The published approaches to directed model-checking all differ from ours either in that
the heuristic has to be provided by the user, or in that the heuristic is based on a very
different kind of reasoning.

Bloem et al [20] describe a mechanism how to model check ECTL and ACTL for-
mulas. The method computes least and greatest fixpoints by under and over approx-
imations based on hints provided by the user. Apart from relying on the user, this
method differs from ours in that it can treat more general formulas, and does not do
a heuristic search. Behrmann et al [12] have studied priced timed automata. Transitions
are labelled with prices, and a heuristic estimates the remaining costs. Behrmann et al
achieved good results in an application for which they hand-coded the heuristic; they
don’t provide an automatic computation.

Yang and Dill [21] use Hamming distance to drive a heuristic search. This is gen-
erally a much cruder approximation than our ATG-based heuristics (with the advantage
of taking much less time to compute). We implemented the Hamming distance heuristic
in UPPAAL, and found it to not work well in our examples: roughly similar to d” and
dY in the Fischer examples, by far the worst heuristic (much worse runtime results) in
the M;, N;, and C; examples. Groce and Visser [6] introduce two heuristics, inspired
by the area of testing, for model checking Java programs. The heuristics do not try to
target an error formula but instead drive the search to cover yet unexplored branches in
the program. Edelkamp et al [4] introduced heuristics to improve error detection with
SPIN. As discussed earlier, we implemented these heuristics (d” and dV) in UPPAAL
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and found them to not work very well in our context. Qian and Nymeyer [7] introduced
the use of “pattern database” heuristics based on abstractions generated by ignoring
some of the state variables. This is a very different abstraction technique than ours,
which keeps all variables, and, instead, simplifies their semantics.

In parallel to ours, related work is done by Dréger et al [5]. A paper is submitted to
this same conference. The two pieces of work are conducted (and submitted) separately
because, like in the works listed above, the techniques used to generate the heuristic
functions are fundamentally different. While we approach from an Al Planning per-
spective, Driger et al modify established abstraction methods from Verification. While
we developed combined treatments of communication and integer variables, their focus
so far is (almost) exclusively on finding good approximations of communication, par-
ticularly of cyclic patterns. Treating integer variables in Driger et al’s approach appears
non-trivial, and has not yet been done. Their approximation works by, in a pre-process,
iteratively “merging” a pair of automata, i.e., by computing their product and then merg-
ing locations until there are at most N locations left, where N is an input parameter.
The resulting heuristic has, in difference to ours, no trouble with the communication
structure depicted in Figure 1 (Section 4) — however, when merging locations one runs
the risk to lose the distinction between dead ends and non dead ends in Figure 3. Indeed,
in that example, UPPAAL excels with our heuristics but doesn’t scale with Dréger et
al’s; in Towers of Hanoi — an example containing excessively many repetitions in its
solution — the picture is exactly inverse. As more realistic examples, we shared the M,
N;, and C; benchmarks. While these have communication structures more like Figure
1, they also rely heavily on integer variables. The results for the two different heuristics
are roughly comparable. There are advantages for h” in the M; and N; benchmarks,
and advantages for Driger et al’s heuristic in the C; benchmarks except C, C'7, and
Cs. Investigating combinations of the two approaches — e.g., using our approach to
treat integers in Dréger et al’s approach — is future work.

7 Conclusion

We have introduced methods for automatically generating two heuristic guidance func-
tions in UPPAAL. We have shown the functions’ potential for yielding more reliable
finding of error states, by reducing the number of search states that need to be consid-
ered, as well as guiding the search to short error paths.

The most pressing research topic right now is how to take clock variables into ac-
count in the heuristic computation. As said, a straightforward treatment is very unlikely
to yield any useful information. We think there is hope in, when building the ATG,
distinguishing between the clock value subsets that can be reached at the individual
automaton locations. Due to location invariants restricting the passage of time, the in-
tervals possible at individual locations are more restricted than the “global” reachable
interval. Particularly, constraints on how one clock value can change due to a transition
often transfer to all other clocks as well since for them time elapses in the same way. (As
a simple example, if one steps from / to I’ and x < 5 is an invariant for I, then we know
that the maximum reachable value for any clock is at most 5 larger than it was in [.) In
a similar fashion, we hope to make the treatment of integer variables more informed by
distinguishing between the value subsets that can be reached at individual locations.
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In the long term, we want to explore the following two directions. First, the “out-

liers” — instances solved in extremely short time — observed with very small hash tables
in bitstate hashing suggest that randomised local search with restarts might be suitable.
Such methods do gradient descents on the search space surface, with random perturba-
tions, until either a solution is reached or a termination criterion (e.g. path length bound
exceeded) holds, and a restart is made. We take the existence of outliers to indicate
that there is a good enough chance for such gradient descents to find shallow solutions.
Second, we believe there is hope in generating heuristic functions based on predicate
abstractions: these could take the clocks into account very naturally.
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Abstract. Many different automata and algorithms have been inves-
tigated in the context of automata-theoretic LTL model checking. This
article compares the behaviour of two variations on the widely used Biichi
automaton, namely (i) a Biichi automaton where states are labelled with
atomic propositions and transitions are unlabelled, and (ii) a form of test-
ing automaton that can only observe changes in state propositions and
makes use of special livelock acceptance states. We describe how these
variations can be generated from standard Biichi automata, and outline
an SCC-based algorithm for verification with testing automata.

The variations are compared to standard automata in experiments
with both random and human-generated Kripke structures and LTL x
formulas, using SCC-based algorithms as well as a recent, improved ver-
sion of the classic nested search algorithm. The results show that SCC-
based algorithms outperform their nested search counterpart, but that
the biggest improvements come from using the variant automata.

Much work has been done on the generation of small automata, but
small automata do not necessarily lead to small products when combined
with the system being verified. We investigate the underlying factors for
the superior performance of the new variations.

1 Introduction

The automata-theoretic approach to model checking is based on the correspon-
dence between temporal logic, automata and formal languages. Checking that a
system S complies with a temporal logic correctness formula entails the appli-
cation of two algorithms: the first to translate a formula ¢ to an w-automaton
(on infinite words), and the second to determine whether the intersection of this
automaton and a similar automaton derived directly from S accepts only the
empty language. It comes as no surprise that since this approach was first pro-
posed, the use of many different kinds of automata has been investigated, and
several variations on the two algorithms have been proposed; some of this work
is mentioned in Section 2.
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It is probably accurate to say that most of the research in this field is based
on Biichi automata with propositional formulas on transitions. We shall refer to
this standard form as transition-labelled. In this work we study two variations
on this theme. First, in Section 3, we consider Biichi automata where the states
carry propositional formulas and the transitions are unlabelled — we shall refer
to these as state-labelled Biichi automata. The second form, the so-called testing
automaton described in Section 4, is a modification that accommodates stutter-
ing in a more natural way. In addition to the standard acceptance states, testing
automata also feature livelock accepting states.

The work on testing automata is based on the results of [21]. There the
authors defined another, slightly more complicated form of testing automaton
and showed that they are more often deteministic than state-labelled Biichi
automata. We extend this work in two important ways: we show how to construct
our form of testing automata and provide an SCC-based algorithm for on-the-fly
verification with them.

In Section 5, we compare the amount work required for on-the-fly verifi-
cation using two different algorithms for transition- and state-labelled Biichi
automata and our new algorithm for testing automata. It turns out that, in our
experiments, the new variations were considerably more efficient in terms of the
number of states and transitions they explore. An important part of the contri-
bution of this paper comes in Section 6, where we discuss exactly how and when
the differences in performance occur and attempt to explain why this is so. Our
conclusions are presented in Section 7.

2 Background and Related Work

The connection between temporal logic and formal languages has been a topic
of research since the 1960’s [3,23,26]; a short but excellent overview of the
development of this work and its relation to model checking is [25, Section 1.3].
The potential benefits of an automata-theoretic approach to model checking was
first pointed out by Wolper in [35], and Wolper, Vardi, and Sistla in [36].

Our definitions of Kripke structures and Biichi automata are standard but,
for the sake of later work, we state them explicitly. From here on we use P to
denote a finite set of atomic propositions.

A Kripke structure [24] over P is a tuple M = (S, I, L, R) where S is a finite
set of states, I C S is the set of initial states, L : S — 27 is a labelling function
that maps each state s to the set of atomic propositions that are true in s, and
R C S x S is the transition relation. We assume that R is total. An execution
path or run of M is an infinite sequence of states r = s18283... € S such that
s1 € I and (s;,8;4+1) € R for all 4 > 1.

A Biichi automaton [4] over an alphabet K is a tuple A = (S, I, R, F') where
S is a finite set of states, I C S is the set of initial states, R C S x 2X x § is
the transition relation, and F' C S is a set of acceptance states. Because sets of
symbols of the alphabet appear on the transitions, we shall refer to this form as
a transition-labelled Biichi automaton (TLBA).
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Each word accepted by A is an infinite sequence of symbols from K. A run
of the automaton over a word w = k1ks ... € K“ is an infinite sequence of states
r = 8182... € S¥ such that s; € I and for all 4 > 1 there exists a K; € K such
that k; € K; and (s;, K;, si+1) € R . The set of states that occur infinitely often
in run r is denoted by inf(r) (and clearly inf(r) C S), and the run is accepting
if and only if inf(r) N F # 0.

When Biichi automata are used for verification we shall use K = 27. This is
interpreted in such a way that if f is a propositional logic formula over P, and
P ={P,...,P,} C 27 is the set of all models of f (in other words, P, € P
if and only if P; = f), then we use (s, f,s') and (s, P,s’) interchangeably as
members of R.

2.1 Construction of Biichi Automata

An early algorithm for converting LTL formulas to Biichi automata was de-
scribed by Vardi and Wolper in [34], but unfortunately it always produced au-
tomata with 29 states, where n is the number of subformulas of the LTL
formula. A more practical algorithm is [18], on which many later improvements
are based. The basic idea is a two-step approach that first translates the input
formula to a generalized Biichi automaton, which is then turned into a (standard)
Biichi automaton using the flag construction due to Choueka [5].

A general class of improvements is based on rewriting rules to simplify the
LTL formula before any automaton is constructed, and several ad hoc heuris-
tics have been proposed to simplify the final automaton. Several groups have
proposed improvements based on different procedures for computing covering
sets [9, 28], while others have concentrated on reducing the final automaton us-
ing simulations [12,13, 14, 20, 29)].

Gastin and Oddoux have investigated the use of very weak alternating au-
tomata as an intermediate form to improve both the size of the final Biichi
automata and the speed of their generation [16]; this approach is not especially
relevant to our work, but we shall make use of their tool for our experiments.

2.2 Verification with Biichi Automata

A Kripke structure M satisfies a specification ¢ if all its executions are allowed
by the specification. This is equivalent to checking that none of M’s executions
satisfy —¢. The automata-theoretic approach therefore consists of constructing
a Biichi automaton A4, computing its product with M, and checking that it is
empty, in other words, checking that no execution of M violates ¢. Although it
is possible to first express M itself as a Biichi automaton, the product of M and
A-4 can be defined more directly as follows.

Let F = {propositional formulas over P}, and let M = (Sar, In, Las, Rar)
be a Kripke structure over P, and A-, = (Sa,Ia, Ra,Fa) a TLBA over 27.
Then the product of M and A4, denoted M || A-, is a triple (S, R, I), where
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— S = S) x Sy is the set of states,

— R C S x S is the transition relation where ((s,a), (s’,a’)) € R if and only if
(s,sY e Ry ANIf € F:(a,f,a') € RaANLpy(s) E f, and

— I C Iy x 14 is the set of initial states.

A run of the product is an infinite sequence of states (s1,a1)(s2,az) ... such
that (s1,a1) € I and ((s;,a:), (Si+1,ai+1)) € R for all ¢ > 1. A counterexample
for ¢ in the product is a run such that ajas ... is an accepting run of A-.

An example of a Kripke structure, Biichi automaton, and their product is
shown in Figure 1. Each state of the Kripke structure (at the top of the figure) is
numbered and labelled with the set of atomic propositions that hold in the state.
In this example, P = {p}. The initial state is indicated by the sourceless arrow
that points to the top left state. The accepting state of the Biichi automaton,
shown in (a), is indicated by a double circle. The states of the product are
labeled with (Kripke state, Biichi state) pairs and those state where the Biichi
automaton is in an accepting state is similarly indicated by a double circle.

Arguably the most popular on-the-fly algorithm for computing the product
automaton and detecting accepting cycles is a nested depth-first search algo-
rithm first proposed by Courcoubetis, Vardi, Wolper and Yannakasis in 1990 [6].
Subsequent improvements [15,19, 22, 27] has not only made it compatible with
partial-order methods, but has also led to a significant reduction in the number
of states and transitions it needs to explore. The core algorithm has also been
adapted for use with generalized Biichi automata [32] and heuristic search [2, 11].
Recent work has looked again at the use of strongly connected component (SCC)
algorithms for both standard and generalized Biichi automata [7,8,17,27]; the
algorithm we describe in Section 4.2 is based on one such.

3 State-Labelled Biichi Automata

A state-labelled Biichi automaton (SLBA) over an alphabet K is a tuple B =
(S,1,U, R, F') where S is a finite set of states, I C S is the set of initial states,
U : S — K maps each state to a symbol of the alphabet, R C S x § is the
transition relation, and F C S is a set of acceptance states.

A run of the automaton over a word w = ki ks ... € K% is an infinite sequence
of states r = s152... € S¥ such that s; € I and (s;,s;4+1) € R and U(s;) = k;
for all i > 1. As for TLBAs, a run r is accepting if and only if inf(r) N F # (.

3.1 Construction of State-Labelled Biichi Automata

The conversion from a TLBA to an SLBA is straightforward. Given a TLBA
A= (Sa,14,Ra,F4) over K, the equivalent SLBA is B = (Sg,Ip,Up, Rp, Fi)
where
- SBZSA><.K,IBZIA><.K,FB=FA><]:(7
— Up maps each state to its second component, so that Ug((s,k)) = k, and
— Rp is such that ((s1,k1), (s2,k2)) € Rp if and only if (s1,k,s2) € Ra for
some k € 25 and ky € k, and k; is any element of K.
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Some states of B may not be reachable from an initial state and can be
eliminated. Isomorphic copies of subautomata of B can also be removed using
an algorithm such as partition refinement. Other, more intricate optimizations
are also possible but we do not focus on them here.

3.2 Verification with State-Labelled Biichi Automata

Let M = (Sum,Inm,La, Ra) be a Kripke structure over P, and let By =
(Sp,Ip,Up, Rp, Fg) be an SLBA over K = 27. Then the product of M and
B_4, denoted M || B, is a triple (S, R, I), where

— S = Sy x Sp is the set of states,

— R C S x S is the transition relation where ((s,b), (s',')) € R if and only if
(s,s") € R A (b,V) € RpALy(s') =Ug(Y), and

— I C Ip x Ip are initial states where (s,b) € I if and only if Lys(s) = Ug(b).

A run of the product is an infinite sequence of states (s1,b1)(s2,b2) ... such
that (s1,b1) € I and ((s;,;), (Si4+1,bi+1)) € R for each i > 1. A counterexample
for ¢ in the product is a run such that b, b . .. is an accepting run of B_4. Exactly
the same algorithms used for TLBAs can be used for SLBAs.

We refer once again to Figure 1 for examples of an SLBA and its product
with a Kripke structure. The notation should be clear; it corresponds to what
was discussed before for the TLBA. It may seem that the difference between
a TLBA and the equivalent SLBA is merely a matter of notation that carries
no benefit. However, the product shown in (b) is already an early indication
that this is not so: M || B-, has two states and two transitions fewer than
M || A-p.

4 Testing Automata

A testing automaton (TA) over an alphabet K is a tuple C' = (S,I,U, R, F,G)
where S is a finite set of states, I C S is the set of initial states, U : I — K maps
each initial state to a symbol of the alphabet, R C S x K x S is the transition
relation, F' C S is a set of Biichi acceptance states, and G C S is a set of livelock
acceptance states.

A run of the testing automaton C over a word w = kiky... € K“ is only
defined when K = 2. In such a case, it is an infinite sequence of states r =
8182 ... € 5% such that s; € I and U(s1) = k1, and for all ¢ > 1 either

1. k; 75 ki11 and (Si, ki ® kit1, Si+1) € R, or
2. ]ﬂi = ki+1 and Si; = Si+1-

Here @ denotes the symmetric difference operator on sets. A run r over a word
w = k1ko ... is accepting if and only if either

1. inf(r) N F # 0 and |inf(w)| > 1, or
2. 3n:(sn €G)ANNi>n:s; =8y Nk =kp).



Larger Automata and Less Work for LTL Model Checking 59

This general formulation of testing automata allows transitions of the form
(s,0,s"), but since they do not add any expressive power to an automaton and are
undesirable in the context of verification, we restrict our attention to automata
without such transitions. However, we do not forbid them, as they are useful for
the conversion algorithm outlined in the next section.

Informally speaking, a TA is an SLBA that, whenever the Kripke structure
executes a stuttering transition, executes a null transition (stays in the same
state). Its transitions are not labelled with propositions or formulas, but with
“change sets”, so that it only observes changes in atomic propositions. In addition
to Biichi acceptance states, TAs also have livelock acceptance states. A run is
accepted if and only if

1. it visits at least one Biichi acceptance state infinitely often and includes an

infinite number of non-stuttering transitions (the |inf(w)| > 1 condition), or
2. it reaches a livelock acceptance state and from that point on contains only

stuttering transitions.

4.1 Construction of Testing Automata

The conversion from SLBA to TA is a two-step process. Given an SLBA B =
(Sp,Ip,Up, Rp, Fg) over alphabet K, we first construct an intermediate TA
C = (Sc, Ic,Uc, Re, Fe, Gc) such that

— Sc =8B, Ic = Ip, Fc = Fp, and G¢ =0,

— Uc(s) = Ug(s) for all s € I, and

— (s1,k,82) € Re if and only if (s1,s2) € Rp and k = Up(s1) ® Up(sa).

In the second step, C' is converted to its final form by computing the maximal
strongly stuttering-connected components, where stuttering-connected means
that every state of the component can reach every other state via a sequence of
zero or more transitions of the form (s, 0, s’). Those components that are non-
trivial (in other words, consists of at least two states or a single state with a
self-loop) and contain at least one Biichi accepting state, are added state-by-state
to the livelock acceptance states G¢. Then, every stuttering transition (s, (), s’)
is removed. If s’ is a member of I¢ or G¢, we add s to the same set (and define
Uc(s) = Uc(s') when s’ € I¢). Finally we remove all unreachable states and
transitions from the automaton.

Note that this construction can be carried out with any Biichi automaton, but
it is only meaningful if the original property is expressible without the use of the
next-state operator. It is not required, however, that the Biichi automaton itself
exhibits no stuttering [21], only that the property is insensitive to stuttering.
This ensures that the language accepted by the automaton remains the same.

As in the case of SLBAs, various further optimizations are possible, but
we do not want to discuss them here. However, it is important to note one
technical aspect that also applies to TLBAs and SLBAs, but which is especially
important for TAs. The set of atomic propositions P may contain propositions
that are never referenced by the automaton in question. For the purposes of
efficient verification, such propositions should be removed from P; they cannot
influence the outcome of the verification and may lead to unnecessary work.
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4.2 Verification with Testing Automata

Let M = (Sam,Im, L, Rar) be a Kripke structure over P, and let C.4 =
(Sc,Ic,Uc, Re, Fo,Ge) be a TA over 27. Then the product of M and C-,,
denoted M || C-g, is a triple (S, R, I), where

— S = Sy x Se is the set of states,
— R C S x S is the transition relation where ((s,c), (s’,¢')) € R if and only if
either
1. (s,8') € Ry A (¢, L (s) ® Las(s'), ') € Ra, or
2. (s,8') € R ANe=c ANLy(s) = Ly(s'), and
— I C Ip X I are initial states where (s,¢) € I if and only if Lps(s) = Uea(c).

A run of the product is an infinite sequence of states (s1,c1)(s2,¢2) ... such
that (s1,¢1) € I and ((s;,¢;), (Si+1,¢i+1)) € R for each i > 1. A counterexample
for ¢ in the product is a run such that cicy ... is an accepting run of C-4.

As before, an example of a TA and its product with a Kripke structure can
be found in Figure 1. Those states in part (c) of the picture where the TA (or
the TA component of the product) is in a livelock accepting state have been
marked with a dotted circle; in this particular example, the TA has no Biichi
acceptance states, so that Fo = () and G¢ = {0}. The Uc labels are shown on
the left of the TA at the source of the arrows to the initial states.

The same algorithms that are used for verification with TLBAs and SLBAs
can be used with a TA to detect those violations that involve Biichi acceptance
states. Also, in [21,33] the authors propose a one-pass algorithm to detect vi-
olations involving the livelock acceptance states of the TA. Unfortunately, it is
not possible to merge these into a single one-pass algorithm: while the first usu-
ally relies on a depth-first exploration of the product automaton, the key to the
second algorithm is that transitions are explored in a specific, non-depth-first
order. One solution is of course to first run the one algorithm, and then the
other, but this is wasteful since any information that the first algorithm could
conceivably gather is lost when it terminates. Moreover, a single one-pass algo-
rithm has distinct advantages. For software model checking it is often expensive
to generate transitions (which may involve steps such as garbage collection or
heap canonization). Furthermore, if each state is visited only once, partial or-
der reduction is simplified and there is no need to “remember” reductions made
during a previous visit.

We now describe a new one-pass algorithm which is based on the LTL model
checking algorithm in [17] (which, in turn, is based on Tarjan’s algorithm for
SCC detection [30]). The new algorithm detects both Biichi and livelock viola-
tions. While the algorithm works entirely reliably for Biichi violations, it does, in
certain cases, fail to report an existe